Geological Heterogeneities Important to Future Enhanced Recovery in Carbonate Reservoirs of Upper Ordovician Red River Formation at Cabin Creek Field, Montana

1982 ◽  
Vol 22 (03) ◽  
pp. 429-444 ◽  
Author(s):  
Kenneth Ruzyla ◽  
Gerald M. Friedman

Abstract Several different pore systems are present in dolomite reservoir rocks of the Red River formation (Upper Ordovician) at Cabin Creek field, MT. Each system is associated with particular depositional environments and diagenetic regimes. Pore geometry is mostly a function of the size and shape of the dolomite crystals composing the rock matrix. Mean pore-throat size, a statistical measure of pore geometry, increases as porosity percent increases, depending on the type of dolomite. This relationship permits prediction of reservoir pore geometry and a better assessment of recovery efficiency once lithofacies distribution, porosity origin, and diagenetic history have been determined for the reservoir by study of cores and rock thin-sections. Introduction The reservoir characteristics of any rock type depend on the arrangement of the pore space and how the pores are interconnected. The pore-system geometry of a reservoir rock must be understood to determine fully its response to primary or enhanced recovery. To predict pore geometry trends, it is necessary to establish relationships between measures of pore geometry and petrophysical parameters. which are measurable by electric-log surveys of boreholes. This is because cores, which are necessary for pore geometry determination, are usually available for select wells of any given field. Pore geometry is mostly a function of depositional environment and diagenetic processes such as cementation, recrystallization, mineralogical alterations, and selective leaching of rock components. This study presents an approach for determining heterogeneities of carbonate-reservoir pore geometry and for delineating pore geometry throughout the reservoir. The application to future enhanced recovery also is discussed. The formation under study is the Red River formation (Upper Ordovician) of Cabin Creek field, a producing oil field located in southeast Montana (Fig. 1). The Red River formation is a major producing reservoir in the area, and Cabin Creek is a potential candidate for tertiary recovery. Structurally, Cabin Creek is on the Cedar Creek anticline, a long asymmetrical feature on the southwest margin of the Williston basin (Fig. 1). Fig. 2 is a structure contour map of Cabin Creek field. The Red River formation averages about 500 ft (153 m) in thickness and consists of a sequence of alternating limestones and dolostones (Fig. 3). Production is from the U2, U4, and U6 dolostone units in the upper 150 ft (46 m) of the formation. The interstratified U1, U3, and US limestone units are nonproductive and nonporous (Fig. 4). Lateral and vertical variations in degree of dolomitization are mostly responsible for variations of reservoir properties. Commingled Ordovician and Silurian oil production was 61,570,000 bbl as of Sept. 1979, with reserves of 13,425,000 bbl (2 134 405 m ). The field has been on waterflood since April 1964. Approximately 1,450 ft (444 m) of core from 12 different wells was studied to delineate field stratigraphy, distribution of lithofacies, and depositional environments. Core slabs were ground with abrasive grit, then etched in diluted hydrochloric acid to enhance sedimentary structures and aid in identification of carbonate grains and matrix material. Staining methods were used to aid mineralogical identification. Diagenesis, porosity types, and origin of porosity were determined by petrographic analysis of thin-sections. Values of porosity percentage, permeability, and saturations are from core-plug analyses. Size and shape of pore throats were determined from mercury capillary-pressure data and from scanning-electron micrographs of resin pore casts, respectively. Plots were made of porosity percentage vs. parameters of pore geometry for producing zones within the Red River formation. SPEJ P. 429^

2019 ◽  
Vol 60 (5) ◽  
pp. 1104-1114
Author(s):  
Afrah Hassan Saleh

Deposition environment and diagenesis processes are very important factors which affect and control the reservoir properties.  The carbonate Mishrif Formation has been selected as a carbonate reservoir in selected wells from southeastern Iraq to understand the influence of the Deposition environment and diagenesis processes on the carbonate reservoir. A core examination of thin sections, shows that Mishrif Formation comprises of six depositional environments, these are: deep marine, lagoon, rudist biostrome, back shoal, and shallow open marine.  These environments have effect by many diagenetic processes, including dolomitization, dissolution, micritization, cementation, recrystallization and Stylolite, some of these processes have improved the reservoir properties of the Mishrif reservoir, these are: dissolution, dolomitization and the stylolization.  The others diagenetic processes have negative influence on the Petrophysical properties, such as cementation, compaction, and recrystallization processes, which damage the porosity and decrease the pore size. The reservoir properties are controlled by deposition environment, where lagoon environment is mostly compact with low porosity, shoal environment reflects a high energy and grain-supported environment and has good reservoir potential, deep-marine environments consist of mudstone to wackestone, which represents low energy level with low porosity and represents the non-reservoir environment.


2021 ◽  
Author(s):  
Seyed Amin Moosavi ◽  
Hesam Aloki Bakhtiari ◽  
Javad Honarmand

Abstract Taking a vast range of carbonate reservoir rock from Asmari and Bangestan formations in southern Iran basins, this study examined the petrographically classification, petrological and petrophysical characteristics, and their implications on the estimation of pore volume compressibility of the carbonate reservoirs. In the current study, a method is developed to classify the carbonate reservoir rocks based on the dominant factors which is involving in elastic property of pore volumes. In order to classifying, a number of 3702 thin sections were studied. Then, the pore volume compressibility of 200 core plugs corresponding to the range of classification parameters were obtained and quantified by a pre-proven equation. The results clearly show an acceptable narrow bandwidth between the upper and lower bound of estimations based on the studied classification. Furthermore, the estimation of pore compressibility-stress relationship was in a good agreement with the experimental observations. Also, the study shows that integrating the routine petrophysical properties are useful for estimation of stress related properties of pore volumes into carbonate reservoir rocks.


2020 ◽  
Vol 10 (8) ◽  
pp. 3751-3766 ◽  
Author(s):  
Iman Nowrouzi ◽  
Abbas Khaksar Manshad ◽  
Amir H. Mohammadi

Abstract The pressure drop around the well in the production from a gas condensate reservoir causes the formation of condensate in the area before it reaches the well and surface space. This condensate and occasionally water in the porous medium can block the well and create an additional pressure drop. Studies show that the chemical treatment of this area eliminates the problem by altering the reservoir rock wettability toward a moderate and strong gasphilicity. For this purpose, fluoropolymers-, fluorosurfactants-, and fluorochemicals-coated nanoparticles can be used. In this work, we have studied two types of fluoride gas namely R134A and R404A, which are widely used in refrigeration industry as refrigerant gases, perfumery, and industrial detergents. The basis of this study was the aging of rock samples in thin sections and plugs in these two gases at different pressures above the critical pressures of them at 70 °C at different times and then conducting the contact angle experiments by placing the drop of water and condensate on the cross sections and then performing imbibition tests using plugs. The results show that in addition to the efficiency of both gases in wettability alteration to gasphilic, the gasphilic intensity obtained at constant temperature depends on the pressure and the aging time of the samples.


2021 ◽  
Vol 9 (12) ◽  
pp. 1410
Author(s):  
Hammad Tariq Janjuhah ◽  
George Kontakiotis ◽  
Abdul Wahid ◽  
Dost Muhammad Khan ◽  
Stergios D. Zarkogiannis ◽  
...  

The pore system in carbonates is complicated because of the associated biological and chemical activity. Secondary porosity, on the other hand, is the result of chemical reactions that occur during diagenetic processes. A thorough understanding of the carbonate pore system is essential to hydrocarbon prospecting. Porosity classification schemes are currently limited to accurately forecast the petrophysical parameters of different reservoirs with various origins and depositional environments. Although rock classification offers a way to describe lithofacies, it has no impact on the application of the poro-perm correlation. An outstanding example of pore complexity (both in terms of type and origin) may be found in the Central Luconia carbonate system (Malaysia), which has been altered by diagenetic processes. Using transmitted light microscopy, 32 high-resolution pictures were collected of each thin segment for quantitative examination. An FESEM picture and a petrographic study of thin sections were used to quantify the grains, matrix, cement, and macroporosity (pore types). Microporosity was determined by subtracting macroporosity from total porosity using a point-counting technique. Moldic porosity (macroporosity) was shown to be the predominant type of porosity in thin sections, whereas microporosity seems to account for 40 to 50% of the overall porosity. Carbonates from the Miocene have been shown to possess a substantial quantity of microporosity, making hydrocarbon estimate and production much more difficult. It might lead to a higher level of uncertainty in the estimation of hydrocarbon reserves if ignored. Existing porosity classifications cannot be used to better understand the poro-perm correlation because of the wide range of geological characteristics. However, by considering pore types and pore structures, which may be separated into macro- and microporosity, the classification can be enhanced. Microporosity identification and classification investigations have become a key problem in limestone reservoirs across the globe.


2021 ◽  
Vol 13 (1) ◽  
pp. 122-129
Author(s):  
Kaiyuan Liu ◽  
Li Qin ◽  
Xi Zhang ◽  
Liting Liu ◽  
Furong Wu ◽  
...  

Abstract Carbonate rocks frequently exhibit less predictable seismic attribute–porosity relationships because of complex and heterogeneous pore geometry. Pore geometry plays an important role in carbonate reservoir interpretation, as it influences acoustic and elastic characters. So in porosity prediction of carbonate reservoirs, pore geometry should be considered as a factor. Thus, based on Gassmann’s equation and Eshelby–Walsh ellipsoidal inclusion theory, we introduced a parameter C to stand by pore geometry and then deduced a porosity calculating expression from compressional expression of Gassmann’s equation. In this article, we present a porosity working flow as well as calculate methods of every parameter needed in the porosity inverting equation. From well testing and field application, it proves that the high-accuracy method is suitable for carbonate reservoirs.


2021 ◽  
pp. 1-15
Author(s):  
Dong-Yu Zheng ◽  
Si-Xuan Wu

Abstract Textures are important features of sandstones; however, their controlling factors are not fully understood. We present a detailed textural analysis of fluvio-lacustrine sandstones and discuss the influences of provenance and depositional environments on sandstone textures. The upper Permian – lowermost Triassic Wutonggou sandstones in the Bogda Mountains, NW China, are the focus of this study. Sandstone thin-sections were studied by point counting and their textures were analysed using statistical and principal component analysis. Fluvial lithic, fluvial feldspathic, deltaic lithic, deltaic feldspathic, littoral lithic and littoral feldspathic sandstone were classified and compared. These comparisons indicate that lithic and feldspathic sandstones from the same depositional settings have significant differences in graphic mean, graphic standard deviation and roundness; in contrast, sandstones from different depositional settings but with similar compositions have limited differences in textures. Moreover, three principal components (PCs) are recognized to explain 75% of the total variance, of which the first principal component (PC1) can explain 44%. In bivariate plots of the PCs, sandstones can be distinguished by composition where lithic and feldspathic sandstones are placed in different fields of the plots along the axis of PC1. However, sandstones from different depositional settings overlap and show no clear division. These results indicate that provenance, mainly the source lithology, is the most significant controlling factor on sandstone texture, whereas the depositional environment has limited influence. This study improves our understanding of textural characteristics of fluvio-lacustrine sandstones and their controlling factors, and shows the potentiality of principal component analysis in sandstone studies.


Author(s):  
Fadhil N. Sadooni ◽  
Hamad Al-Saad Al-Kuwari ◽  
Ahmad Sakhaee-Pour ◽  
Wael S. Matter

Introduction: The Jurassic Arab Formation is the main oil reservoir in Qatar. The Formation consists of a succession of limestone, dolomite, and anhydrite. Materials and methods: A multi-proxy approach has been used to study the Formation. This approach is based on core analysis, thin sections, and log data in selected wells in Qatar. Results: The reservoir has been divided into a set of distinctive petrophysical units. The Arab Formation consists of cyclic sediments of oolitic grainstone/packstone, foraminifera-bearing packstone-wackestone, lagoonal mudstone and dolomite, alternating with anhydrite. The sediments underwent a series of diagenetic processes such as leaching, micritization, cementation, dolomitization and fracturing. The impact of these diagenetic processes on the different depositional fabrics created a complex porosity system. So, in some cases there is preserved depositional porosity such as the intergranular porosity in the oolitic grainstone, but in other cases, diagenetic cementation blocked the same pores and eventually destroyed them. In other cases, diagenesis improved the texture of non-porous depositional texture such as mudstone through incipient dolomitization creating inter-crystalline porosity. Dissolution created vugs and void secondary porosity in otherwise non-porous foraminiferal wackestone and packstone. Therefore, creating a matrix of depositional fabrics versus diagenetic processes enabled the identification of different situations in which porosity was either created or destroyed. Future Directions: By correlating the collected petrographic data with logs, it will become possible to identify certain “facio-diagenetic” signatures on logs which will be very useful in both exploration and production. Studying the micro and nano-porosity will provide a better understanding of the evolution and destruction of its porosity system.


Sign in / Sign up

Export Citation Format

Share Document