scholarly journals The effects of food simulating liquids on surface roughness, hardness, and solubility of bulk fill composites

2019 ◽  
Author(s):  
Özge Gizem Cabadağ ◽  
NİHAN GÖNÜLOL

Abstract BackgroundThe aim of this study was to compare the effects of food simulating liquids (FSLs) on the surface roughness, surface hardness and solubility of bulk fill composites. MethodsTwo-hundred samples were prepared from four high viscosity bulk fill composites (SonicFillTM, Tetric® EvoCeram Bulk Fill, Beautifil-Bulk Restorative, FiltekTM Bulk Fill Posterior Restorative) and a microhybrid composite (FiltekTM Z250). After the initial weights of the samples were recorded (m1), surface roughness measurements were evaluated with a profilometer. The samples were stored in 4 different FSLs for 7 days, then the second surface roughness values were recorded. Then the samples were stored in a desiccator to reach the constant mass and the values were recorded as m2. The solubility levels were calculated according to the ISO 4049: 2009 specification. The surface hardness values of the samples were determined by using the Vickers microhardness measuring device. Twenty specimens from each group were evaluated in terms of surface morphology with scanning electron microscope (SEM).ResultsBeautifil Bulk Restorative was the most affected group in terms of surface roughness after storage in FSLs and citric acid caused the highest values in this group (p<0,005). Beautifil Bulk Restorative and Filtek Z250 groups showed the highest surface hardness values, while the Tetric EvoCeram group had the lowest. The highest solubility values were detected in Beautifil Bulk Restorative group, and citric acid and ethanol caused the highest solubility values on all the tested composites. ConclusionsBeautifil Bulk Restorative group showed significant differences from the other groups in all tested parameters.

2019 ◽  
Author(s):  
Özge Gizem Cabadağ ◽  
NİHAN GÖNÜLOL

Abstract Abstract Background: The aim of this study was to compare the effects of food simulating liquids (FSLs) on the surface roughness, surface hardness and solubility of bulk fill composites. Methods: Two-hundred samples were prepared from four high viscosity bulk fill composites (SonicFill TM , Tetric® EvoCeram Bulk Fill, Beautifil-Bulk Restorative, Filtek TM Bulk Fill Posterior Restorative) and a microhybrid composite (Filtek TM Z250). After the initial weights of the samples were recorded (m 1 ), surface roughness measurements were evaluated with a profilometer. The samples were stored in 4 different FSLs for 7 days, then the second surface roughness values were recorded. Then the samples were stored in a desiccator to reach the constant mass and the values were recorded as m 2 . The solubility levels were calculated according to the ISO 4049: 2009 specification. The surface hardness values of the samples were determined by using the Vickers microhardness measuring device. Twenty specimens from each group were evaluated in terms of surface morphology with scanning electron microscope (SEM). Results: Beautifil Bulk Restorative was the most affected group in terms of surface roughness after storage in FSLs and citric acid caused the highest values in this group (p<0,005). Beautifil Bulk Restorative and Filtek Z250 groups showed the highest surface hardness values, while the Tetric EvoCeram group had the lowest. The highest solubility values were detected in Beautifil Bulk Restorative group, and citric acid and ethanol caused the highest solubility values on all the tested composites. Conclusions: Beautifil Bulk Restorative group showed the highest surface roughness and solubility values among the tested groups, while the same group showed the highest surface hardness. Key Words: Bulk fill composites, food simulating liquids, solubility, surface hardness, surface roughness.


2021 ◽  
pp. 232020682098845
Author(s):  
Özge Gizem Cabadag˘ ◽  
Nihan Gönülol

Aim: To investigate the surface roughness, surface hardness, and solubility of bulk-fill composites after exposure to food-simulating liquids (FSLs). Materials and Methods: A total of 200 disc-shaped samples (8 mm diameter × 4 mm depth) were prepared using four bulk-fill composites (SonicFillTM, Tetric® EvoCeram Bulk Fill, Beautifil-Bulk Restorative, FiltekTM Bulk Fill Posterior Restorative) and a microhybrid composite (FiltekTM Z250) ( n = 40). Following the measurement of initial weights of the samples ( m1), the surface roughness measurements were gauged using a contact-profilometer. The samples were stored in four different FSLs for 7 days, and then the second surface roughness values were recorded. The samples were stored in a desiccator to reach the constant mass and the values were recorded as m2, then the solubility levels were calculated. The Vickers microhardness values of the samples were determined. A total of 20 specimens were evaluated in terms of surface morphology with a scanning electron microscope (SEM). Data were statistically analyzed with the two-way ANOVA and Bonferroni tests ( P < .05). Results: Beautifil-Bulk Restorative was affected at most in terms of surface roughness after storage in FSLs and citric acid caused the highest values in this group ( P < .005). Beautifil-Bulk Restorative and Filtek Z250 showed the highest surface hardness values, while the Tetric EvoCeram group had the lowest. The highest solubility values were found in Beautifil-Bulk Restorative, and citric acid and ethanol yielded the highest solubility values for all of the composites. Conclusion: Beautifil-Bulk Restorative is the most affected group in all parameters evaluated and also affected overly by citric acid among the FSLs in consequence of its prereacted glass ionomer fillers.


2019 ◽  
Vol 17 (1) ◽  
pp. 228080001982779 ◽  
Author(s):  
Ozgun Yusuf Ozyilmaz ◽  
Ceyda Akin

Introduction: We assessed the effect of different available denture cleansers on the roughness and hardness of polyetherketoneketone, thermoinjection-molded polyamide, and polymethylmethacrylate. Materials and Methods: A total of 150 disc-shaped specimens were fabricated (10 mm × 2 mm) from these three denture base resins, and divided into five subgroups ( n = 10) according to immersion procedures. One of these groups subjected to distilled water served as control, whereas other groups were subjected to daily cleansing with four denture cleansers (Corega, Protefix, Curaprox, and Perlodent) for 8 h a day for 140 days. The surface roughness and hardness values of specimens were recorded by measuring twice at baseline, and again after application of chemical solutions. Topography alterations after treatments were assessed with scanning electron microscopy. The data were subjected to statistical analysis and comparison among groups was done using Kruskal Wallis and Wilcoxon Signed Ranks tests. P-value <0.05 was considered significant. Results: The surface roughness of polyetherketoneketone, polymethylmethacrylate, and polyamide dentures was increased significantly by chemical solutions of denture cleansers. While the hardness value of polyetherketoneketone was not affected significantly after immersion in denture cleansers, those of polymethylmethacrylate and polyamide decreased significantly. Compared with Curaprox, the effervescent tablets significantly altered the surface hardness and roughness of polyamide. Conclusion: Denture cleansers can considerably alter the surface roughness and hardness of denture base resins and should be used carefully depending on the material.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Lucas Costa de Medeiros Dantas ◽  
João Paulo da Silva-Neto ◽  
Talita Souza Dantas ◽  
Lucas Zago Naves ◽  
Flávio Domingues das Neves ◽  
...  

This study sought to assess the effect of different surface finishing and polishing protocols on the surface roughness and bacterial adhesion (S. sanguinis) to polymethyl methacrylates (PMMA). Fifty specimens were divided into 5 groups (n=10) according to their fabrication method and surface finishing protocol: LP (3 : 1 ratio and laboratory polishing), NF (Nealon technique and finishing), NP (Nealon technique and manual polishing), MF (3 : 1 ratio and manual finishing), and MP (3 : 1 ratio and manual polishing). For each group, five specimens were submitted to bacterial adhesion tests and analyzed by scanning electron microscopy (SEM). Two additional specimens were subjected to surface topography analysis by SEM and the remaining three specimens were subjected to surface roughness measurements. Data were compared by one-way ANOVA. The mean bacterial counts were as follows: NF,19.6±3.05; MP,5.36±2.08; NP,4.96±1.93; MF,7.36±2.45; and LP,1.56±0.62(CFU). The mean surface roughness values were as follows: NF,3.23±0.15; MP,0.52±0.05; NP,0.60±0.08; MF,2.69±0.12; and LP,0.07±0.02(μm). A reduction in the surface roughness was observed to be directly related to a decrease in bacterial adhesion. It was verified that the laboratory processing of PMMA might decrease the surface roughness and consequently the adhesion ofS. sanguinisto this material.


2019 ◽  
Vol 391 ◽  
pp. 66-73 ◽  
Author(s):  
A.B. Rezende ◽  
G.A. Amorim ◽  
D.J. Minicucci ◽  
S.T. Fonseca ◽  
P.R. Mei

To verify the effect of 0.13 % vanadium addition (% in weight) on the wear resistance of a railroad wheel steel with 0.7 % carbon, twin-disc rolling-sliding test were performed. These two steels were named 7V and 7C. The test discs were analyzed to verify the superficial conditions and wear mechanisms using SEM (Scanning Electron Microscopy) and roughness measurements. After 100,000 cycles running it was concluded that without the presence of debris, the 7V steel presented a reduction in 35 % the mass loss compared to 7C steel. For the 7V steel, in the test without debris, the discs presented small cracks (10 μm long), very near (3 μm deep) the surface, but in the test with the presence of debris, the disc surfaces presented delaminated material and long cracks (100 μm long) faraway from surface (up to 72 μm deep). The presence of debris also increased the roughness parameters in 7V steel: average Rz jumped from near 6 μm in the steel without debris to near 26 μm in the steel with debris.


2013 ◽  
Author(s):  
Yibo Gao ◽  
Benxin Wu ◽  
Ze Liu ◽  
Yun Zhou

Ultrasonic cavitation peening is a peening process utilizing the high pressure induced by ultrasonic cavitation in liquids (typically water). However, the relevant previous investigations in the literature have been limited. In this paper, ultrasonic cavitation peening on stainless steel and nickel alloy has been studied, including the observation or characterization of the surface hardness, morphology, profile, roughness and oxygen contamination of treated workpiece samples. It has been found that for the studied situations, ultrasonic cavitation peening (at a sufficiently high horn vibration amplitude) can obviously enhance the workpiece surface hardness without significantly increasing the surface roughness, changing surface morphology observed by scanning electron microscope (SEM), or contaminating the surface by oxygen.


2018 ◽  
Vol 55 (4) ◽  
pp. 584-589
Author(s):  
Simona Stoleriu ◽  
Gianina Iovan ◽  
Irina Nica ◽  
Galina Pancu ◽  
Andrei Victor Sandu ◽  
...  

The aim of this study was to evaluate and to compare the surface hardness of three types of resin-based materials used for direct restoration after heating at different temperatures. A giomer (Beautifil II, Shofu Dental), a compomer (Dyract eXtra, Dentsply Sirona) and a hybrid composite resin (Gaenial Posterior, GC Corporation) were selected for this study. Twenty disk-shaped specimens of each material were heated at room temperature (21�C), at 37�C, at 50�C and at 60�C. Vickers microhardness test was performed on top and bottom surfaces using digital microhardness tester (Micro-Vickers Hardness System CV- 400DMTM, CV Instruments Namicon). The top and bottom surfaces VHN was calculated as a mean value of five determinations. Also, the microhardness ratio was calculated by dividing the top mean VHN value by bottom mean VHN value. Increased mean hardness values were recorded after heating, irrespective of resin-based tested materials. The highest hardness values were recorded after heating all three materials at 60�C, followed by the hardness recorded at 50�C, 37�C and 21�C. For top surfaces, the lowest hardness value was recorded in Dyract eXtra group when samples were warmed at room temperature and the highest hardness value was obtained in Beautifil II group when samples where heated at 60�C. For the bottom surfaces, Dyract eXtra specimens heated at 21�C presented the lowest hardness values and Beautifil II samples heated at 60�C presented the highest hardness values. On top and on bottom surfaces Dyract eXtra showed the lowest hardness values, followed by G-aenial Posterior and Beautifil II, irrespective the heating temperature.


2006 ◽  
Vol 7 (5) ◽  
pp. 54-61
Author(s):  
Fouad S. Salama ◽  
K. Marche' Schulte ◽  
Michael F. Iseman ◽  
John W. Reinhardt

Abstract Aim The aim of this study was to assess the effect of repeated (twice) applications of two fluoride varnishes (Duraflor and CavityShield) on the surface micromorphology of a high-viscosity glass ionomer (Fuji IX GP), a compomer (F2000), and a flowable composite (Filtek™ Flow) using a profilometer and scanning electron microscope (SEM). Methods and Materials Fifteen specimens were prepared from each material, surface roughness (Ra) was measured with a profilometer, and an impression was made for epoxy replicas. The fluoride varnishes were applied to the experimental specimens of each material at repeated intervals of 48 hours. For all specimens, Ra was measured and SEM replicas were examined. Results The final Ra of glass ionomer was 3.49 ± 0.59 (mean ± SD) for CavityShield, 4.69 ± 1.33 for Duraflor, and 2.96 ± 1.53 for the controls. The final Ra of flowable composite was 0.53 ± 0.20 for CavityShield, 2.61 ± 3.08 for Duraflor, and 0.15 ± 0.09 for controls. For glass ionomer and flowable composite, Duraflor was associated with a significantly higher roughness at the final measurement compared to controls (P < 0.05). SEM micrographs showed differing surface topographies which in many specimens confirmed Ra analysis. Conclusion Fuji IX GP and Filtek™ Flow showed significantly higher roughness after two applications of Duraflor compared to controls. Citation Salama FS, Schulte KM, Iseman MF, Reinhardt JW. Effects of Repeated Fluoride Varnish Application on Different Restorative Surfaces. J Contemp Dent Pract 2006 November;(7)5:054-061.


2012 ◽  
Vol 06 (01) ◽  
pp. 079-086 ◽  
Author(s):  
Oya Bala ◽  
Deniz Hacer Arisu ◽  
Ihsan Yikilgan ◽  
Seda Arslan ◽  
Abdulkadir Gullu

ABSTRACTObjectives: The aim of this study was to evaluate surface roughness and hardness of a nanofiller GIC, a resin-modified GIC, three conventional GICs, and a silver-reinforced GICMethods: For each material, 11 specimens were prepared and then stored in distilled water at 37 °C for 24 h. The surface roughness of 5 specimens was measured using a surface profilometer before polishing and after polishing with coarse, medium, fine, superfine aluminum oxide abrasive Sof-Lex discs respectively. The hardness of the upper surfaces of the remaining 6 specimens was measured with a Vickers microhardness measuring instrument.Results: All tested GICs showed lower surface roughness values after the polishing procedure. Surface finish of nanofiller GIC was smoother than the other tested GICs after polishing. This was followed by resin-modified GIC, Fuji II LC; then silver-reinforced GIC, Argion Molar, conventional GICs, Aqua Ionofil Plus, Fuji IX, and Ionofil Molar, respectively. The result of the hardness test indicated that the microhardness value of silver-reinforced GIC was greater than that of the other GICs. When the hardness values of all tested GICs were compared, the differences between materials (except Aqua Ionofil Plus with Ionofil Molar and Ketac N100 with Fuji II LC (P>.05)) were found statistically significant (P<.05).Conclusions: According to the results of this study, it can be concluded that the differences in the composition of GICs may affect their surface roughness and hardness. (Eur J Dent 2012;6:79-86)


1974 ◽  
Vol 96 (3) ◽  
pp. 163-167 ◽  
Author(s):  
J. A. Bailey ◽  
S. E. Becker

The effect of cutting speed and wear land length on the phenomenon of microchip formation during machining of quenched and tempered AISI 4340 steel under dry orthogonal conditions is determined. Machined test pieces are examined using scanning electron and optical microscopy. Surface roughness is determined using a profilometer. A possible mechanism of microchip formation based on the interaction between the surfaces of the tool and freshly machined work piece is discussed. It is suggested that the grooves left by the generation of microchips may act as sources for the initiation of failures by creep, fatigue and stress corrosion cracking. It is also suggested that the results obtained using scanning electron microscopy may be more indicative of the true surface condition than surface roughness measurements.


Sign in / Sign up

Export Citation Format

Share Document