scholarly journals Assessment of the ptxD gene as a growth and selective marker in Trichoderma atroviride using Pccg6, a novel constitutive promoter 

2019 ◽  
Author(s):  
Nohemi Carreras-Villaseñor ◽  
Guillermo Rico-Ruiz ◽  
Jose Fabricio Lopez-Hernandez ◽  
Pedro Martinez-Hernandez ◽  
Luis Herrera-Estrella ◽  
...  

Abstract BackgroundTrichoderma species are among the most effective cell factories to produce recombinant proteins, whose productivity relies on the molecular toolkit and promoters available for the expression of the target protein. Although inducible promoter systems have been developed for producing recombinant proteins in Trichoderma, constitutive promoters are often a desirable alternative. Constitutive promoters are simple to use, do not require external stimuli or chemical inducers to be activated, and lead to purer enzyme preparations. Moreover, most of the promoters for homologous and heterologous expression reported in Trichoderma have been commonly evaluated by directly assessing production of industrial enzymes, requiring optimization of laborious protocols.ResultsHere we report the identification of Pccg6, a novel Trichoderma atroviride constitutive promoter, that has similar transcriptional strength as that of the commonly used pki1 promoter. Pccg6 displayed conserved arrangements of transcription factor binding sites between promoter sequences of Trichoderma ccg6 orthologues genes, potentially involved in their regulatory properties. The predicted ccg6-encoded protein potentially belongs to the SPE1/SPI1 protein family and shares high identity with CCG6 orthologue sequences from other fungal species including Trichoderma reesei, Trichoderma virens, Trichoderma asperellum, and lo a lesser extent to that of Neurosposa crassa. We also report the use of the Pccg6 promoter to drive the expression of PTXD, a phosphite oxidoreductase of bacterial origin, which allowed T. atroviride to utilize phosphite as a sole source of phosphorus. We propose ptxD as a growth reporter gene that allows real-time comparison of the functionality of different promoters by monitoring growth of Trichoderma transgenic lines and enzymatic activity of PTXD. Finally, we show that constitutive expression of ptxD provided T. atroviride a competitive advantage to outgrow bacterial contaminants when supplied with phosphite as a sole source of phosphorus.ConclusionsA new constitutive promoter, ccg6, for expression of homologous and heterologous proteins has been identified and tested in T. atroviride by expressing PTXD, which resulted in an effective and visible phenotype to evaluate transcriptional activity of sequence promoters. Use of PTXD as a growth marker holds great potential for assessing activity of other promoters and for biotechnological applications as a contamination control system.

2020 ◽  
Author(s):  
Nohemi Carreras-Villaseñor ◽  
Guillermo Rico-Ruiz ◽  
Ricardo Chavez-Montes ◽  
Lenin Yong-Villalobos ◽  
Jose Fabricio Lopez-Hernandez ◽  
...  

Abstract Background Trichoderma species are among the most effective cell factories to produce recombinant proteins, whose productivity relies on the molecular toolkit and promoters available for the expression of the target protein. Although inducible promoter systems have been developed for producing recombinant proteins in Trichoderma , constitutive promoters are often a desirable alternative. Constitutive promoters are simple to use, do not require external stimuli or chemical inducers to be activated, and lead to purer enzyme preparations. Moreover, most of the promoters for homologous and heterologous expression reported in Trichoderma have been commonly evaluated by directly assessing production of industrial enzymes, requiring optimization of laborious protocols. Results Here we report the identification of P ccg6, a novel Trichoderma atroviride constitutive promoter, that has similar transcriptional strength as that of the commonly used pki1 promoter. P ccg6 displayed conserved arrangements of transcription factor binding sites between promoter sequences of Trichoderma ccg6 orthologues genes, potentially involved in their regulatory properties. The predicted ccg6 -encoded protein potentially belongs to the SPE1/SPI1 protein family and shares high identity with CCG6 orthologue sequences from other fungal species including Trichoderma reesei , Trichoderma virens , Trichoderma asperellum , and lo a lesser extent to that of Neurosposa crassa . We also report the use of the P ccg6 promoter to drive the expression of PTXD, a phosphite oxidoreductase of bacterial origin, which allowed T. atroviride to utilize phosphite as a sole source of phosphorus. We propose ptxD as a growth reporter gene that allows real-time comparison of the functionality of different promoters by monitoring growth of Trichoderma transgenic lines and enzymatic activity of PTXD. Finally, we show thatconstitutive expression of ptxD provided T. atroviride a competitive advantage to outgrow bacterial contaminants when supplied with phosphite as a sole source of phosphorus. Conclusions A new constitutive promoter, ccg6 , for expression of homologous and heterologous proteins has been identified and tested in T. atroviride by expressing PTXD, which resulted in an effective and visible phenotype to evaluate transcriptional activity of sequence promoters. Use of PTXD as a growth marker holds great potential for assessing activity of other promoters and for biotechnological applications as a contamination control system.


2021 ◽  
Vol 22 (3) ◽  
pp. 1379
Author(s):  
Sofia O.D. Duarte ◽  
Gabriel A. Monteiro

The Lactococcus lactis bacterium found in different natural environments is traditionally associated with the fermented food industry. But recently, its applications have been spreading to the pharmaceutical industry, which has exploited its probiotic characteristics and is moving towards its use as cell factories for the production of added-value recombinant proteins and plasmid DNA (pDNA) for DNA vaccination, as a safer and industrially profitable alternative to the traditional Escherichia coli host. Additionally, due to its food-grade and generally recognized safe status, there have been an increasing number of studies about its use in live mucosal vaccination. In this review, we critically systematize the plasmid replicons available for the production of pharmaceutical-grade pDNA and recombinant proteins by L. lactis. A plasmid vector is an easily customized component when the goal is to engineer bacteria in order to produce a heterologous compound in industrially significant amounts, as an alternative to genomic DNA modifications. The additional burden to the cell depends on plasmid copy number and on the expression level, targeting location and type of protein expressed. For live mucosal vaccination applications, besides the presence of the necessary regulatory sequences, it is imperative that cells produce the antigen of interest in sufficient yields. The cell wall anchored antigens had shown more promising results in live mucosal vaccination studies, when compared with intracellular or secreted antigens. On the other side, engineering L. lactis to express membrane proteins, especially if they have a eukaryotic background, increases the overall cellular burden. The different alternative replicons for live mucosal vaccination, using L. lactis as the DNA vaccine carrier or the antigen producer, are critically reviewed, as a starting platform to choose or engineer the best vector for each application.


2021 ◽  
pp. 153537022110301
Author(s):  
Caio Coutinho de Souza ◽  
Jander Matos Guimarães ◽  
Soraya dos Santos Pereira ◽  
Luis André Morais Mariúba

Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.


1989 ◽  
Vol 9 (8) ◽  
pp. 3314-3322
Author(s):  
G M Cole ◽  
R K Mortimer

The Saccharomyces cerevisiae RAD54 gene is transcriptionally regulated by a broad spectrum of DNA-damaging agents. Induction of RAD54 by DNA-damaging agents is under positive control. Sequences responsible for DNA damage induction (the DRS element) lie within a 29-base-pair region from -99 to -70 from the most proximal transcription start site. This inducible promoter element is functionally separable from a poly(dA-dT) region immediately downstream which is required for constitutive expression. Deletions which eliminate induction of RAD54 transcription by DNA damage but do not affect constitutive expression have no effect on growth or survival of noninducible strains relative to wild-type strains in the presence of DNA-damaging agents. The DRS element is also not required for homothallic mating type switching, transcriptional induction of RAD54 during meiosis, meiotic recombination, or spontaneous or X-ray-induced mitotic recombination. We find no phenotype for a lack of induction of RAD54 message via the damage-inducible DRS, which raises significant questions about the physiology of DNA damage induction in S. cerevisiae.


2020 ◽  
Vol 21 (3) ◽  
pp. 990 ◽  
Author(s):  
Kangsan Kim ◽  
Donghui Choe ◽  
Dae-Hee Lee ◽  
Byung-Kwan Cho

A large proportion of the recombinant proteins manufactured today rely on microbe-based expression systems owing to their relatively simple and cost-effective production schemes. However, several issues in microbial protein expression, including formation of insoluble aggregates, low protein yield, and cell death are still highly recursive and tricky to optimize. These obstacles are usually rooted in the metabolic capacity of the expression host, limitation of cellular translational machineries, or genetic instability. To this end, several microbial strains having precisely designed genomes have been suggested as a way around the recurrent problems in recombinant protein expression. Already, a growing number of prokaryotic chassis strains have been genome-streamlined to attain superior cellular fitness, recombinant protein yield, and stability of the exogenous expression pathways. In this review, we outline challenges associated with heterologous protein expression, some examples of microbial chassis engineered for the production of recombinant proteins, and emerging tools to optimize the expression of heterologous proteins. In particular, we discuss the synthetic biology approaches to design and build and test genome-reduced microbial chassis that carry desirable characteristics for heterologous protein expression.


2017 ◽  
Vol 91 (9) ◽  
Author(s):  
Regina Selb ◽  
Christian Derntl ◽  
Reinhard Klein ◽  
Beatrix Alte ◽  
Christoph Hofbauer ◽  
...  

ABSTRACT In this study, we describe the construction of the first genetically modified mutant of a halovirus infecting haloalkaliphilic Archaea. By random choice, we targeted ORF79, a currently uncharacterized viral gene of the haloalkaliphilic virus ϕCh1. We used a polyethylene glycol (PEG)-mediated transformation method to deliver a disruption cassette into a lysogenic strain of the haloalkaliphilic archaeon Natrialba magadii bearing ϕCh1 as a provirus. This approach yielded mutant virus particles carrying a disrupted version of ORF79. Disruption of ORF79 did not influence morphology of the mature virions. The mutant virus was able to infect cured strains of N. magadii, resulting in a lysogenic, ORF79-disrupted strain. Analysis of this strain carrying the mutant virus revealed a repressor function of ORF79. In the absence of gp79, onset of lysis and expression of viral proteins occurred prematurely compared to their timing in the wild-type strain. Constitutive expression of ORF79 in a cured strain of N. magadii reduced the plating efficiency of ϕCh1 by seven orders of magnitude. Overexpression of ORF79 in a lysogenic strain of N. magadii resulted in an inhibition of lysis and total absence of viral proteins as well as viral progeny. In further experiments, gp79 directly regulated the expression of the tail fiber protein ORF34 but did not influence the methyltransferase gene ORF94. Further, we describe the establishment of an inducible promoter for in vivo studies in N. magadii. IMPORTANCE Genetic analyses of haloalkaliphilic Archaea or haloviruses are only rarely reported. Therefore, only little insight into the in vivo roles of proteins and their functions has been gained so far. We used a reverse genetics approach to identify the function of a yet undescribed gene of ϕCh1. We provide evidence that gp79, a currently unknown protein of ϕCh1, acts as a repressor protein of the viral life cycle, affecting the transition from the lysogenic to the lytic state of the virus. Thus, repressor genes in other haloviruses could be identified by sequence homologies to gp79 in the future. Moreover, we describe the use of an inducible promoter of N. magadii. Our work provides valuable tools for the identification of other unknown viral genes by our approach as well as for functional studies of proteins by inducible expression.


2020 ◽  
Author(s):  
Sophie A. Harrington ◽  
Anna E. Backhaus ◽  
Samantha Fox ◽  
Christian Rogers ◽  
Philippa Borrill ◽  
...  

AbstractBackgroundFunctional characterisation of genes using transgenic methods is increasingly common in cereal crops. Yet standard methods of gene over-expression can lead to undesirable developmental phenotypes, or even embryo lethality, due to ectopic gene expression. Inducible expression systems allow the study of such genes by preventing their expression until treatment with the specific inducer. When combined with the Cre-Lox recombination system, inducible promoters can be used to initiate constitutive expression of a gene of interest. Yet while these systems are well established in dicot model plants, like Arabidopsis thaliana, they have not yet been implemented in grasses.ResultsHere we present an irreversible heat-shock inducible system developed using Golden Gate-compatible components which utilises Cre recombinase to drive constitutive gene expression in barley and wheat. We show that a heat shock treatment of 38 °C is sufficient to activate the construct and drive expression of the gene of interest. Modulating the duration of heat shock controls the density of induced cells. Short durations of heat shock cause activation of the construct in isolated single cells, while longer durations lead to global construct activation. The system can be successfully activated in multiple tissues and at multiple developmental stages and shows no activation at standard growth temperatures (~ 20 °C).ConclusionsThis system provides an adaptable framework for use in gene functional characterisation in cereal crops. The developed vectors can be easily adapted for specific genes of interest within the Golden Gate cloning system. By using an environmental signal to induce activation of the construct, the system avoids pitfalls associated with consistent and complete application of chemical inducers. As with any inducible system, care must be taken to ensure that the expected construct activation has indeed taken place.


1992 ◽  
Vol 263 (2) ◽  
pp. G215-G223 ◽  
Author(s):  
P. G. Traber ◽  
W. Wang ◽  
L. Yu

Mammalian small intestine contains cytochrome P-450-dependent monooxygenase enzymes that are capable of metabolizing a wide variety of xenobiotics and activating procarcinogens to mutagenic compounds. The epithelial cells lining the small intestine are separated into a proliferating undifferentiated compartment located in crypts and a nonproliferating differentiated compartment located on villi. The constitutive expression and induction by xenobiotics of genes that encode components of the cytochrome P-450-dependent mono-oxygenase system along the rat intestinal crypt-villus axis were investigated using isolated epithelial cells and in situ hybridization. For each gene examined, hybridization analysis of RNA obtained from isolated epithelial cells correlated with findings on in situ RNA hybridization. Cytochrome P-450IA1 mRNA (CYP1A1), the major aromatic hydrocarbon-inducible P-450, and cytochrome P-450IIB1 mRNA (CYP2B1), the major phenobarbital-inducible P-450, were constitutively expressed in villus cells with no detectable mRNA present in crypts. Treatment with several chemical inducers resulted in a marked increase in CYP1A1 mRNA in both crypt and villus cells. In contrast, although CYP2B1 mRNA was inducible in villus cells, CYP2B1 mRNA was not detected in crypts after treatment with chemical inducers. NADPH cytochrome P-450 reductase, a necessary component for the activity of all P-450 enzymes, was expressed constitutively at low levels only in villus cells. Treatment with dexamethasone induced reductase mRNA in both crypt and villus cells. Taken together, these results demonstrate that there is a complex gene-specific pattern of expression of the microsomal monooxygenase system along the crypt-villus axis of rat small intestine.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Author(s):  
Kai Peng ◽  
Heinrich Koukamp ◽  
Isak S. Pretorius ◽  
Ian T. Paulsen

AbstractThe unfolded protein response (UPR) is a highly conserved cellular response in eukaryotic cells to counteract endoplasmic reticulum (ER) stress, typically triggered by unfolded protein accumulation. In addition to its relevance to human diseases like cancer cell development, the induction of the UPR has a significant impact on recombinant protein production yields in microbial cell factories, including the industrial workhorse Saccharomyces cerevisiae. Being able to accurately detect and measure this ER stress response in single cells, enables the rapid optimisation of protein production conditions and high-throughput strain selection strategies. Current methodologies to monitor the UPR in S. cerevisiae are often temporally and spatially removed from the cultivation stage, or lack updated systematic evaluation. To this end we constructed and systematically evaluated a series of high-throughput UPR sensors by different designs, incorporating either yeast native UPR promoters or novel synthetic minimal UPR promoters. The native promoters of DER1 and ERO1 were identified to have suitable UPR biosensor properties and served as an expression level guide for orthogonal sensor benchmarking. Our best synthetic minimal sensor, SM1, was only 98 bp in length, had minimal homology to other native yeast sequences and displayed superior sensor characteristics. Using this synthetic minimal UPR sensor, we demonstrate its ability to accurately discriminate between cells expressing different heterologous proteins and at varying production levels. Our sensor is thus a novel high-throughput tool for determining expression/engineering strategies for optimal heterologous protein production.


Sign in / Sign up

Export Citation Format

Share Document