scholarly journals Three-dimensional printing versus conventional machining in the creation of a meatal urethral dilator: a cost and mechanical strength analysis

2020 ◽  
Author(s):  
Michael Yue-Cheng Chen ◽  
Jacob Skewes ◽  
Ryan Daley ◽  
Maria Ann Woodruff ◽  
Nicholas John Rukin

Abstract Background Three-dimensional (3D) printing is a promising technology in medicine. Low-cost 3D printing options are accessible but the limitations are often poorly understood. We aim to compare fused deposition modelling (FDM), the most common and low cost 3D printing technique, with selective laser sintering (SLS) and conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market.Methods A meatal urethral dilator was designed using computer-aided design (CAD). The dilator was 3D printed vertically orientated on a low cost FDM 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on a SLS 3D printer in medical nylon. The dilator was also machined in medical stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped.Results The horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators respectively (503g vs 283g vs 163g, p < 0.001). The SLS nylon dilator did not fail but began to bend and deformed at around 5,000g of pressure. The steel dilator did not bend even at 10,000g of pressure. The cost per dilator is highest for the steel dilator if assuming a low quantity of five at 98 USD, but this decreases to 30 USD for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD for a quantity of five but relatively unchanged at 27 for a quantity of 1000.Conclusions SLS and conventional machining created clinically functional meatal dilators but low-cost FDM printing could not. We suggest that at the current time 3D printing is not a replacement for conventional manufacturing techniques which are still the most reliable way to produce large quantities of parts with a simple geometry such as the meatal dilator. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot be achieved with conventional machining methods.

2020 ◽  
Author(s):  
Michael Yue-Cheng Chen ◽  
Jacob Skewes ◽  
Ryan Daley ◽  
Maria Ann Woodruff ◽  
Nicholas John Rukin

Abstract BackgroundThree-dimensional (3D) printing is a promising technology but the limitations are often poorly understood. We compare different 3D printingmethods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market. MethodsA prototype dilator was 3D printed vertically orientated on a low cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on a SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped. ResultsThe horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators respectively (503g vs 283g vs 163g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000. ConclusionsAt the current time 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise beachieved.


2021 ◽  
Vol 18 (1) ◽  
pp. 07-13
Author(s):  
Neha Thakur ◽  
Hari Murthy

Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper.


Author(s):  
Mamta H. Wankhade ◽  
Satish G. Bahaley

<p>3D printing is a form of additive manufacturing technology where a three dimensional object is created by laying down successive layers of material. It is mechanized method whereby 3D objects are quickly made on a reasonably sized machine connected to a computer containing blueprints for the object. As 3D printing is growing fast and giving a boost to product development, the factories doing 3D printing need to continuously meet the printing requirements and maintain an adequate amount of inventory of the filament. As the manufactures have to buy these filaments from various vendors, the cost of 3D printing increases. To overcome the problem faced by the manufacturers, small workshop owners, the need of 3D filament making machine arises. This project focuses on designing and fabricating a portable fused deposition 3D printer filament making machine with cheap and easily available components to draw 1.75 mm diameter ABS filament.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Philipp Honigmann ◽  
Neha Sharma ◽  
Ralf Schumacher ◽  
Jasmine Rueegg ◽  
Mathias Haefeli ◽  
...  

Recently, three-dimensional (3D) printing has become increasingly popular in the medical sector for the production of anatomical biomodels, surgical guides, and prosthetics. With the availability of low-cost desktop 3D printers and affordable materials, the in-house or point-of-care manufacturing of biomodels and Class II medical devices has gained considerable attention in personalized medicine. Another projected development in medical 3D printing for personalized treatment is the in-house production of patient-specific implants (PSIs) for partial and total bone replacements made of medical-grade material such as polyetheretherketone (PEEK). We present the first in-hospital 3D printed scaphoid prosthesis using medical-grade PEEK with fused filament fabrication (FFF) 3D printing technology.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2492
Author(s):  
Jun Wang ◽  
Bin Yang ◽  
Xiang Lin ◽  
Lei Gao ◽  
Tao Liu ◽  
...  

3D printing technology has been widely used in various fields, such as biomedicine, clothing design, and aerospace, due to its personalized customization, rapid prototyping of complex structures, and low cost. However, the application of 3D printing technology in the field of non-pneumatic tires has not been systematically studied. In this study, we evaluated the application of potential thermoplastic polyurethanes (TPU) materials based on FDM technology in the field of non-pneumatic tires. First, the printing process of TPU material based on fused deposition modeling (FDM) technology was studied through tensile testing and SEM observation. The results show that the optimal 3D printing temperature of the selected TPU material is 210 °C. FDM technology was successfully applied to 3D printed non-pneumatic tires based on TPU material. The study showed that the three-dimensional stiffness of 3D printed non-pneumatic tires is basically 50% of that obtained by simulation. To guarantee the prediction of the performance of 3D printed non-pneumatic tires, we suggest that the performance of these materials should be moderately reduced during the structural design for performance simulation.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Yeong-Jae Lee ◽  
Kwang-Hee Lee ◽  
Chul-Hee Lee

In recent years, through the development of three-dimensional (3D) printing technology, 3D‐printed parts have been used in various industries, such as medical equipment and robotics. Various 3D printing methods have been developed. Today, a 3D printer can be used even in precision parts, such as bolts and bearings. In this study, journal bearings are manufactured by a 3D printer to evaluate friction performance and self-lubricating performance. The journal bearings are fabricated using two types of 3D printing method: fused deposition modeling (FDM) and selective laser sintering (SLS). The specimens manufactured by FDM are produced by plastic materials with three-layer thicknesses. Nylon-based materials and aluminum-based materials are used to fabricate the SLS specimen. Micropores are created in the specimens during the printing process. Therefore, the self-lubricating performance can occur by micropores. The experimental setup is designed and constructed to evaluate the friction performance by varying rotational speed and the radial load. Through this study, the self-lubricating performance and friction performance of 3D-printed journal bearings are evaluated, and proper operating conditions for 3D-printed bearings are suggested.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


Author(s):  
Ghazi Qaryouti ◽  
Abdel Rahman Salbad ◽  
Sohaib A. Tamimi ◽  
Anwar Almofleh ◽  
Wael A. Salah ◽  
...  

The three-dimensional (3D) printing technologies represent a revolution in the manufacturing sector due to their unique characteristics. These printers arecapable to increase the productivitywithlower complexity in addition tothe reduction inmaterial waste as well the overall design cost prior large scalemanufacturing.However, the applications of 3D printing technologies for the manufacture of functional components or devices remain an almost unexplored field due to their high complexity. In this paper the development of 3D printing technologies for the manufacture of functional parts and devices for different applications is presented. The use of 3D printing technologies in these applicationsis widelyused in modelingdevices usually involves expensive materials such as ceramics or compounds. The recent advances in the implementation of 3D printing with the use of environmental friendly materialsin addition to the advantages ofhighperformance and flexibility. The design and implementation of relatively low-cost and efficient 3D printer is presented. The developed prototype was successfully operated with satisfactory operated as shown from the printed samples shown.


Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


Sign in / Sign up

Export Citation Format

Share Document