scholarly journals Uncovering genomic regions controlling plant architectural traits in hexaploid wheat using GWAS

2020 ◽  
Author(s):  
Lingqiang Wang ◽  
Ali Muhammad ◽  
Weicheng Hu ◽  
Jinsheng Yu ◽  
Shahid Ullah Khan ◽  
...  

Abstract Background: Wheat is a staple food crop worldwide. Plant height is a key factor in plant architecture as it plays a crucial role in lodging and thus affects yield and quality. Genome-wide studies are mostly applied in crop plants, due to its advanced genotyping technologies, identification of novel loci, and improved statistical approaches. Results: In this study, the population was genotyped by using Illumina iSelect 90K single nucleotide polymorphism (SNP) assay and finally 22,905 high-quality SNPs were used to perform a genome-wide association study (GWAS) for plant architectural traits employing four multi-locus GWAS (ML-GWAS) and three single-locus GWAS (SL-GWAS) models. As a result, 174 and 97 significant SNPs controlling plant architectural traits were detected by four ML-GWAS and three SL-GWAS methods, respectively. Among these SNP makers, 43 SNPs were commonly detected, including seven across multiple environments and thirty-six across multiple methods. Interestingly, five most stable SNPs (Kukri_c34553_89, RAC875_c8121_1490, wsnp_Ex_rep_c66315_64480362, Ku_c5191_340, and tplb0049a09_1302) consistently detected across multiple environments and methods, possibly played a role in modulating plant height and flag leaf length. When comparing ML-GWAS methods, pLARmEB was the most powerful and accountable for the detection of 49 significant SNPs that mostly contributed to plant height (36 SNPs). However, in SL-GWAS the FarmCPU model detected most of the significant SNPs. Moreover, a total of 152 candidate genes were found that are likely to be involved in plant growth and development which may provide insightful information related to plant architectural traits.Conclusion: Altogether, our results reveal 174 and 97 significant SNPs controlling plant architectural traits using four ML-GWAS and three SL-GWAS methods, respectively. The detection of the stable loci across multiple environments and methods, possibly play a role in modulating plant architectural traits in hexaploid wheat, and finally will contribute to the discovery of valuable SNP loci for marker-assisted selection (MAS) in wheat molecular breeding.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Muhammad ◽  
Jianguo Li ◽  
Weichen Hu ◽  
Jinsheng Yu ◽  
Shahid Ullah Khan ◽  
...  

AbstractWheat is a major food crop worldwide. The plant architecture is a complex trait mostly influenced by plant height, tiller number, and leaf morphology. Plant height plays a crucial role in lodging and thus affects yield and grain quality. In this study, a wheat population was genotyped by using Illumina iSelect 90K single nucleotide polymorphism (SNP) assay and finally 22,905 high-quality SNPs were used to perform a genome-wide association study (GWAS) for plant architectural traits employing four multi-locus GWAS (ML-GWAS) and three single-locus GWAS (SL-GWAS) models. As a result, 174 and 97 significant SNPs controlling plant architectural traits were detected by ML-GWAS and SL-GWAS methods, respectively. Among these SNP makers, 43 SNPs were consistently detected, including seven across multiple environments and 36 across multiple methods. Interestingly, five SNPs (Kukri_c34553_89, RAC875_c8121_1490, wsnp_Ex_rep_c66315_64480362, Ku_c5191_340, and tplb0049a09_1302) consistently detected across multiple environments and methods, played a role in modulating both plant height and flag leaf length. Furthermore, candidate SNPs (BS00068592_51, Kukri_c4750_452 and BS00022127_51) constantly repeated in different years and methods associated with flag leaf width and number of tillers. We also detected several SNPs (Jagger_c6772_80, RAC875_c8121_1490, BS00089954_51, Excalibur_01167_1207, and Ku_c5191_340) having common associations with more than one trait across multiple environments. By further appraising these GWAS methods, the pLARmEB and FarmCPU models outperformed in SNP detection compared to the other ML-GWAS and SL-GWAS methods, respectively. Totally, 152 candidate genes were found to be likely involved in plant growth and development. These finding will be helpful for better understanding of the genetic mechanism of architectural traits in wheat.


2020 ◽  
Vol 10 (5) ◽  
pp. 1685-1696
Author(s):  
Lorenzo Stagnati ◽  
Vahid Rahjoo ◽  
Luis F. Samayoa ◽  
James B. Holland ◽  
Virginia M. G. Borrelli ◽  
...  

Fusarium verticillioides, which causes ear, kernel and stem rots, has been reported as the most prevalent species on maize worldwide. Kernel infection by F. verticillioides results in reduced seed yield and quality as well as fumonisin contamination, and may affect seedling traits like germination rate, entire plant seedling length and weight. Maize resistance to Fusarium is a quantitative and complex trait controlled by numerous genes with small effects. In the present work, a Genome Wide Association Study (GWAS) of traits related to Fusarium seedling rot was carried out in 230 lines of a maize association population using 226,446 SNP markers. Phenotypes were scored on artificially infected kernels applying the rolled towel assay screening method and three traits related to disease response were measured in inoculated and not-inoculated seedlings: plant seedling length (PL), plant seedling weight (PW) and germination rate (GERM). Overall, GWAS resulted in 42 SNPs significantly associated with the examined traits. Two and eleven SNPs were associated with PL in inoculated and not-inoculated samples, respectively. Additionally, six and one SNPs were associated with PW and GERM traits in not-inoculated kernels, and further nine and thirteen SNPs were associated to the same traits in inoculated kernels. Five genes containing the significant SNPs or physically closed to them were proposed for Fusarium resistance, and 18 out of 25 genes containing or adjacent to significant SNPs identified by GWAS in the current research co-localized within QTL regions previously reported for resistance to Fusarium seed rot, Fusarium ear rot and fumonisin accumulation. Furthermore, linkage disequilibrium analysis revealed an additional gene not directly observed by GWAS analysis. These findings could aid to better understand the complex interaction between maize and F. verticillioides.


2018 ◽  
Author(s):  
Veena Devi Ganeshan ◽  
Stephen O. Opiyo ◽  
Samuel K. Mutiga ◽  
Felix Rotich ◽  
David M. Thuranira ◽  
...  

ABSTRACTThe fungal phytopathogen Magnaporthe oryzae causes blast disease in cereals such as rice and finger millet worldwide. In this study, we assessed genetic diversity of 160 isolates from nine sub-Saharan Africa (SSA) and other principal rice producing countries and conducted a genome-wide association study (GWAS) to identify the genomic regions associated with virulence of M. oryzae. GBS of isolates provided a large and high-quality 617K single nucleotide polymorphism (SNP) dataset. Disease ratings for each isolate was obtained by inoculating them onto differential lines and locally-adapted rice cultivars. Genome-wide association studies were conducted using the GBS dataset and sixteen disease rating datasets. Principal Component Analysis (PCA) was used an alternative to population structure analysis for studying population stratification from genotypic data. A significant association between disease phenotype and 528 SNPs was observed in six GWA analyses. Homology of sequences encompassing the significant SNPs was determined to predict gene identities and functions. Seventeen genes recurred in six GWA analyses, suggesting a strong association with virulence. Here, the putative genes/genomic regions associated with the significant SNPs are presented.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zareen Sarfraz ◽  
Muhammad Shahid Iqbal ◽  
Xiaoli Geng ◽  
Muhammad Sajid Iqbal ◽  
Mian Faisal Nazir ◽  
...  

For about a century, plant breeding has widely exploited the heterosis phenomenon–often considered as hybrid vigor–to increase agricultural productivity. The ensuing F1 hybrids can substantially outperform their progenitors due to heterozygous combinations that mitigate deleterious mutations occurring in each genome. However, only fragmented knowledge is available concerning the underlying genes and processes that foster heterosis. Although cotton is among the highly valued crops, its improvement programs that involve the exploitation of heterosis are still limited in terms of significant accomplishments to make it broadly applicable in different agro-ecological zones. Here, F1 hybrids were derived from mating a diverse Upland Cotton germplasm with commercially valuable cultivars in the Line × Tester fashion and evaluated across multiple environments for 10 measurable traits. These traits were dissected into five different heterosis types and specific combining ability (SCA). Subsequent genome-wide predictions along-with association analyses uncovered a set of 298 highly significant key single nucleotide polymorphisms (SNPs)/Quantitative Trait Nucleotides (QTNs) and 271 heterotic Quantitative Trait Nucleotides (hQTNs) related to agronomic and fiber quality traits. The integration of a genome wide association study with RNA-sequence analysis yielded 275 candidate genes in the vicinity of key SNPs/QTNs. Fiber micronaire (MIC) and lint percentage (LP) had the maximum number of associated genes, i.e., each with 45 related to QTNs/hQTNs. A total of 54 putative candidate genes were identified in association with HETEROSIS of quoted traits. The novel players in the heterosis mechanism highlighted in this study may prove to be scientifically and biologically important for cotton biologists, and for those breeders engaged in cotton fiber and yield improvement programs.


2021 ◽  
Author(s):  
Lijun Shi ◽  
Yang Li ◽  
Qian Liu ◽  
Longchao Zhang ◽  
Ligang Wang ◽  
...  

Abstract Background: Sow milk produce ability is an important limiting factor impacting suboptimal growth and survival of piglets. By pig genetic improvement, the litter size has been increased, and larger litters need more suckled mammary glands, that results in increased milk from lactating sow. Hence, it has much significance to explore the sow lactation performance. The aim of this study was to estimate genetic parameters and screen single nucleotide polymorphisms (SNPs) for milk produce ability trait in 985 Yorkshire pigs by a genome-wide association study (GWAS), and to further identify the candidate genes.Results: By ASReml, we estimated the heritability of sow milk produce ability: 0.18 ± 0.07. With the Fixed and random effect model Circulating Probability Unification (FarmCPU), we performed a GWAS, and detected seven genome-wide significant SNPs, namely, Sus scrofa Chromosome (SSC) 2: ASGA0010040 (P = 7.73E-11); SSC2:MARC0029355 (P = 1.30E-08), SSC6: WU_10.2_6_65751151 (P = 1.32E-10), SSC7: MARC0058875 (P = 4.99E-09), SSC10: WU_10.2_10_49571394 (P = 6.79E-08), SSC11: M1GA0014659 (P = 1.19E-07), and SSC15: MARC0042106 (P = 1.16E-07). We performed the distribution of phenotypes corresponding to genotypes of the seven SNPs, and showed that ASGA0010040, MARC0029355, MARC0058875, WU_10.2_10_49571394, M1GA0014659, and MARC0042106 have extreme phenotypic values corresponded to the homozygous genotypes, while the intermediate values corresponded to the heterozygous genotypes. Further, we screened for flanking regions ± 200 kb nearby seven significant SNPs, and identified 30 genes. Among of them, 24 as the candidates were involved in lactose metabolism, colostrum immunity, milk protein, and milk fat by the gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. Through the combined analysis between 24 candidate genes and differently expressed genes (DEGs) detected in transcriptome data (GSE101983), we found 11 commons (NAV2, ANO3, MUC15, DISP3, FBXO6, CLCN6, SLA-DQB1, PSMB8, PSMB9, TAP1, and KIF5C). Further, by comparing the chromosome positions of the candidate genes with the quantitative trait locus (QTLs) previously reported, a total of 13 genes were found to be within 0.86 Mb to 93.92 Mb of the reported QTLs for sow milk yield, in which, NAV2 was found to be located with 0.86 Mb of the QTL region ssc2: 40936355.Conclusions: In conclusion, we identified seven significant SNPs located on SSC2, 6, 7, 10, 11, and 15, and proposed 24 candidate genes for milk produce ability trait in Yorkshire pig. Among of them, 11 were the key candidates. These results contribute to the identification of variants and candidate genes for sow milk produce ability.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xue Ren ◽  
Guang-Li Yang ◽  
Wei-Feng Peng ◽  
Yong-Xin Zhao ◽  
Min Zhang ◽  
...  

Abstract Horns are a cranial appendage found exclusively in Bovidae, and play important roles in accessing resources and mates. In sheep (Ovies aries), horns vary from polled to six-horned, and human have been selecting polled animals in farming and breeding. Here, we conducted a genome-wide association study on 24 two-horned versus 22 four-horned phenotypes in a native Chinese breed of Sishui Fur sheep. Together with linkage disequilibrium (LD) analyses and haplotype-based association tests, we identified a genomic region comprising 132.0–133.1 Mb on chromosome 2 that contained the top 10 SNPs (including 4 significant SNPs) and 5 most significant haplotypes associated with the polycerate phenotype. In humans and mice, this genomic region contains the HOXD gene cluster and adjacent functional genes EVX2 and KIAA1715, which have a close association with the formation of limbs and genital buds. Our results provide new insights into the genetic basis underlying variable numbers of horns and represent a new resource for use in sheep genetics and breeding.


Heredity ◽  
2020 ◽  
Author(s):  
Yanhua Zhang ◽  
Yuzhe Wang ◽  
Yiyi Li ◽  
Junfeng Wu ◽  
Xinlei Wang ◽  
...  

Abstract Chicken growth traits are economically important, but the relevant genetic mechanisms have not yet been elucidated. Herein, we performed a genome-wide association study to identify the variants associated with growth traits. In total, 860 chickens from a Gushi-Anka F2 resource population were phenotyped for 68 growth and carcass traits, and 768 samples were genotyped based on the genotyping-by-sequencing (GBS) method. Finally, 734 chickens and 321,314 SNPs remained after quality control and removal of the sex chromosomes, and these data were used to carry out a GWAS analysis. A total of 470 significant single-nucleotide polymorphisms (SNPs) for 43 of the 68 traits were detected and mapped on chromosomes (Chr) 1–6, -9, -10, -16, -18, -23, and -27. Of these, the significant SNPs in Chr1, -4, and -27 were found to be associated with more than 10 traits. Multiple traits shared significant SNPs, indicating that the same mutation in the region might have a large effect on multiple growth or carcass traits. Haplotype analysis revealed that SNPs within the candidate region of Chr1 presented a mosaic pattern. The significant SNPs and pathway enrichment analysis revealed that the MLNR, MED4, CAB39L, LDB2, and IGF2BP1 genes could be putative candidate genes for growth and carcass traits. The findings of this study improve our understanding of the genetic mechanisms regulating chicken growth and carcass traits and provide a theoretical basis for chicken breeding programs.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Abdourazak Alio Moussa ◽  
Ajmal Mandozai ◽  
Yukun Jin ◽  
Jing Qu ◽  
Qi Zhang ◽  
...  

Abstract Background Breeding for new maize varieties with propitious root systems has tremendous potential in improving water and nutrients use efficiency and plant adaptation under suboptimal conditions. To date, most of the previously detected root-related trait genes in maize were new without functional verification. In this study, seven seedling root architectural traits were examined at three developmental stages in a recombinant inbred line population (RIL) of 179 RILs and a genome-wide association study (GWAS) panel of 80 elite inbred maize lines through quantitative trait loci (QTL) mapping and genome-wide association study. Results Using inclusive composite interval mapping, 8 QTLs accounting for 6.44–8.83 % of the phenotypic variation in root traits, were detected on chromosomes 1 (qRDWv3-1-1 and qRDW/SDWv3-1-1), 2 (qRBNv1-2-1), 4 (qSUAv1-4-1, qSUAv2-4-1, and qROVv2-4-1), and 10 (qTRLv1-10-1, qRBNv1-10-1). GWAS analysis involved three models (EMMAX, FarmCPU, and MLM) for a set of 1,490,007 high-quality single nucleotide polymorphisms (SNPs) obtained via whole genome next-generation sequencing (NGS). Overall, 53 significant SNPs with a phenotypic contribution rate ranging from 5.10 to 30.2 % and spread all over the ten maize chromosomes exhibited associations with the seven root traits. 17 SNPs were repeatedly detected from at least two growth stages, with several SNPs associated with multiple traits stably identified at all evaluated stages. Within the average linkage disequilibrium (LD) distance of 5.2 kb for the significant SNPs, 46 candidate genes harboring substantial SNPs were identified. Five potential genes viz. Zm00001d038676, Zm00001d015379, Zm00001d018496, Zm00001d050783, and Zm00001d017751 were verified for expression levels using maize accessions with extreme root branching differences from the GWAS panel and the RIL population. The results showed significantly (P < 0.001) different expression levels between the outer materials in both panels and at all considered growth stages. Conclusions This study provides a key reference for uncovering the complex genetic mechanism of root development and genetic enhancement of maize root system architecture, thus supporting the breeding of high-yielding maize varieties with propitious root systems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260723
Author(s):  
Yixiong Bai ◽  
Xiaohong Zhao ◽  
Xiaohua Yao ◽  
Youhua Yao ◽  
Likun An ◽  
...  

Hulless barley (Hordeum vulgare L. var. nudum), also called naked barley, is a unique variety of cultivated barley. The genome-wide specific length amplified fragment sequencing (SLAF-seq) method is a rapid deep sequencing technology that is used for the selection and identification of genetic loci or markers. In this study, we collected 300 hulless barley accessions and used the SLAF-seq method to identify candidate genes involved in plant height (PH) and tiller number (TN). We obtained a total of 1407 M paired-end reads, and 228,227 SLAF tags were developed. After filtering using an integrity threshold of >0.8 and a minor allele frequency of >0.05, 14,504,892 single-nucleotide polymorphisms (SNP) loci were screened out. The remaining SNPs were used for the construction of a neighbour-joining phylogenetic tree, and the three subcluster members showed no obvious differentiation among regional varieties. We used a genome wide association study approach to identify 1006 and 113 SNPs associated with TN and PH, respectively. Based on best linear unbiased predictors (BLUP), 41 and 29 SNPs associated with TN and PH, respectively. Thus, several of genes, including Hd3a and CKX5, may be useful candidates for the future genetic breeding of hulless barley. Taken together, our results provide insight into the molecular mechanisms controlling barley architecture, which is important for breeding and yield.


Sign in / Sign up

Export Citation Format

Share Document