scholarly journals Propofol attenuated the effect of TNF-α on occludin expression by inhibiting HIF-1α/VEGF/VEGFR-2/ERK signaling pathway in hCMEC/D3 cells

2019 ◽  
Author(s):  
Yue Zhang ◽  
Xiaowei Ding ◽  
Changhong Miao ◽  
Jiawei Chen

Abstract Purpose: The levels of tight junction proteins (TJs), especially occludin correlate with blood-brain barrier (BBB) disruption caused by central nervous system (CNS) inflammation during perioperative period. It has been reported that propofol, the most commonly used anesthetic, could inhibit inflammation response in CNS. In this study, we investigated the effects of TNF-α and propofol on occludin expression in human cerebral microvascular endothelial cell line, D3 clone (hCMEC/D3 cells), and explored the underlying mechanisms. Methods: The hCMEC/D3 cells were treated with propofol, followed by TNF-α. The expression and phosphorylation of Hif-1α, VEGF, VEGFR-2, ERK and occludin were measured by Western blot analysis. The in vitro cell viability of hCMEC/D3 cells was measured by cell counting kit-8. Results: TNF-α (10 ng/ml, 4 h) significantly decreased the expression of occludin, which was attenuated by propofol (25 μM). TNF-α induced Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, while propofol could inhibit it. In addition, the inhibitors of Hif-1α, VEGF, VEGFR-2, and ERK could reduce the effect of TNF-α on occludin expression. Conclusion: TNF-α could decrease the expression of occludin via Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, which was attenuated by propofol.

2019 ◽  
Author(s):  
Yue Zhang ◽  
Xiaowei Ding ◽  
Changhong Miao ◽  
Jiawei Chen

Abstract Purpose The levels of tight junction proteins (TJs), especially occludin correlate with blood-brain barrier (BBB) disruption caused by central nervous system (CNS) inflammation during perioperative period. It has been reported that propofol, the most commonly used anesthetic, could inhibit inflammation response in CNS. In this study, we investigated the effects of TNF-α and propofol on occludin expression in human cerebral microvascular endothelial cell line, D3 clone (hCMEC/D3 cells), and explored the underlying mechanisms. Methods The hCMEC/D3 cells were treated with propofol, followed by TNF-α. The expression and phosphorylation of HIF-1α, VEGF, VEGFR-2, ERK and occludin were measured by Western blot analysis. Results TNF-α (10 ng/ml, 4 h) significantly decreased the expression of occludin, which was attenuated by propofol (25 μM). TNF-α induced HIF-1α/VEGF/VEGFR-2/ERK signaling pathway, while propofol could inhibit it. In addition, the inhibitors of HIF-1α, VEGF, VEGFR-2, and ERK could reduce the effect of TNF-α on occludin expression. Conclusion TNF-α could decrease the expression of occludin via HIF-1α/VEGF/VEGFR-2/ERK signaling pathway, which was attenuated by propofol.


2019 ◽  
Author(s):  
Yue Zhang ◽  
Xiaowei Ding ◽  
Changhong Miao ◽  
Jiawei Chen

Abstract Purpose: The levels of tight junction proteins (TJs), especially occludin, correlate with blood-brain barrier (BBB) disruption caused by inflammation in central nervous system (CNS). It has been reported that propofol, the most commonly used anesthetic, could inhibit inflammation response in CNS. In this study, we investigated the effects of tumor necrosis factor-α(TNF-α) and propofol on occludin expression in human cerebral microvascular endothelial cell line, D3 clone (hCMEC/D3 cells), and explored the underlying mechanisms. Methods: The hCMEC/D3 cells were treated with propofol, followed by TNF-α. The expression and phosphorylation of Hif-1α, VEGF, VEGFR-2, ERK, p38MAPK and occludin were measured by Western blot analysis. The cell viability of hCMEC/D3 cells was measured by cell counting kit-8. Results: TNF-α (10 ng/ml, 4 h) significantly decreased the expression of occludin, which was attenuated by propofol (25 μM). TNF-α induced Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, while propofol could inhibit it. TNF-α induced the phosphorylation of p38MAPK, while propofol had no effect on it. In addition, the inhibitors of Hif-1α, VEGF, VEGFR-2, and ERK could reduce the effect of TNF-α on occludin expression. Conclusion: TNF-α could decrease the expression of occludin via activating Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, which was attenuated by propofol.


2019 ◽  
Author(s):  
Yue Zhang ◽  
Xiaowei Ding ◽  
Changhong Miao ◽  
Jiawei Chen

Abstract Background: The levels of tight junction proteins (TJs), especially occludin, correlate with blood-brain barrier (BBB) disruption caused by inflammation in central nervous system (CNS). It has been reported that propofol, the most commonly used anesthetic, could inhibit inflammation response in CNS. In this study, we investigated the effects of tumor necrosis factor-α(TNF-α) and propofol on occludin expression in human cerebral microvascular endothelial cell line, D3 clone (hCMEC/D3 cells), and explored the underlying mechanisms. Methods: The hCMEC/D3 cells were treated with propofol, followed by TNF-α. The expression and phosphorylation of Hif-1α, VEGF, VEGFR-2, ERK, p38MAPK and occludin were measured by Western blot analysis. The cell viability of hCMEC/D3 cells was measured by cell counting kit-8. Results: TNF-α (10 ng/ml, 4 h) significantly decreased the expression of occludin, which was attenuated by propofol (25 μM). TNF-α induced Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, while propofol could inhibit it. TNF-α induced the phosphorylation of p38MAPK, while propofol had no effect on it. In addition, the inhibitors of Hif-1α, VEGFR-2, and ERK could reduce the effect of TNF-α on occludin expression. Conclusion: TNF-α could decrease the expression of occludin via activating Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, which was attenuated by propofol.


2019 ◽  
Author(s):  
Yue Zhang ◽  
Xiaowei Ding ◽  
Changhong Miao ◽  
Jiawei Chen

Abstract Purpose: The levels of tight junction proteins (TJs), especially occludin, correlate with blood-brain barrier (BBB) disruption caused by inflammation in central nervous system (CNS). It has been reported that propofol, the most commonly used anesthetic, could inhibit inflammation response in CNS. In this study, we investigated the effects of tumor necrosis factor-α(TNF-α) and propofol on occludin expression in human cerebral microvascular endothelial cell line, D3 clone (hCMEC/D3 cells), and explored the underlying mechanisms. Methods: The hCMEC/D3 cells were treated with propofol, followed by TNF-α. The expression and phosphorylation of Hif-1α, VEGF, VEGFR-2, ERK, p38MAPK and occludin were measured by Western blot analysis. The cell viability of hCMEC/D3 cells was measured by cell counting kit-8. Results: TNF-α (10 ng/ml, 4 h) significantly decreased the expression of occludin, which was attenuated by propofol (25 μM). TNF-α induced Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, while propofol could inhibit it. TNF-α induced the phosphorylation of p38MAPK, while propofol had no effect on it. In addition, the inhibitors of Hif-1α, VEGF, VEGFR-2, and ERK could reduce the effect of TNF-α on occludin expression. Conclusion: TNF-α could decrease the expression of occludin via activating Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, which was attenuated by propofol.


2019 ◽  
Author(s):  
Yue Zhang ◽  
Xiaowei Ding ◽  
Changhong Miao ◽  
Jiawei Chen

Abstract Background: The levels of tight junction proteins (TJs), especially occludin, correlate with blood-brain barrier (BBB) disruption caused by inflammation in central nervous system (CNS). It has been reported that propofol, the most commonly used anesthetic, could inhibit inflammation response in CNS. In this study, we investigated the effects of tumor necrosis factor-α(TNF-α) and propofol on occludin expression in human cerebral microvascular endothelial cell line, D3 clone (hCMEC/D3 cells), and explored the underlying mechanisms. Methods: The hCMEC/D3 cells were treated with propofol, followed by TNF-α. The expression and phosphorylation of Hif-1α, VEGF, VEGFR-2, ERK, p38MAPK and occludin were measured by Western blot analysis. The cell viability of hCMEC/D3 cells was measured by cell counting kit-8. Results: TNF-α (10 ng/ml, 4 h) significantly decreased the expression of occludin, which was attenuated by propofol (25 μM). TNF-α induced Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, while propofol could inhibit it. TNF-α induced the phosphorylation of p38MAPK, while propofol had no effect on it. In addition, the inhibitors of Hif-1α, VEGFR-2, and ERK could reduce the effect of TNF-α on occludin expression. Conclusion: TNF-α could decrease the expression of occludin via activating Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, which was attenuated by propofol.


2019 ◽  
Author(s):  
Yue Zhang ◽  
Xiaowei Ding ◽  
Changhong Miao ◽  
Jiawei Chen

Abstract Purpose: The levels of tight junction proteins (TJs), especially occludin, correlate with blood-brain barrier (BBB) disruption caused by inflammation in central nervous system (CNS). It has been reported that propofol, the most commonly used anesthetic, could inhibit inflammation response in CNS. In this study, we investigated the effects of tumor necrosis factor-α(TNF-α) and propofol on occludin expression in human cerebral microvascular endothelial cell line, D3 clone (hCMEC/D3 cells), and explored the underlying mechanisms. Methods: The hCMEC/D3 cells were treated with propofol, followed by TNF-α. The expression and phosphorylation of Hif-1α, VEGF, VEGFR-2, ERK, p38MAPK and occludin were measured by Western blot analysis. The cell viability of hCMEC/D3 cells was measured by cell counting kit-8. Results: TNF-α (10 ng/ml, 4 h) significantly decreased the expression of occludin, which was attenuated by propofol (25 μM). TNF-α induced Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, while propofol could inhibit it. TNF-α induced the phosphorylation of p38MAPK, while propofol had no effect on it. In addition, the inhibitors of Hif-1α, VEGF, VEGFR-2, and ERK could reduce the effect of TNF-α on occludin expression. Conclusion: TNF-α could decrease the expression of occludin via activating Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, which was attenuated by propofol.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1230 ◽  
Author(s):  
Ke Xu ◽  
Jun Wang ◽  
Hongyu Liu ◽  
Jing Zhao ◽  
Wenfa Lu

Melatonin influences physiological processes such as promoting proliferation and regulating cell development and function, and its effects on chicken Sertoli cells are unknown. Therefore, we investigated the effects of melatonin on cell proliferation and its underlying mechanisms in chicken Sertoli cells. Chicken Sertoli cells were exposed to varying melatonin concentrations (1, 10, 100, and 1000 nM), and the melatonin-induced effects on cell proliferation were measured by Cell Counting Kit 8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), real-time qPCR, and western blotting. We found that 1000 nM melatonin significantly (p < 0.05) promoted cell proliferation in chicken Sertoli cells. Furthermore, melatonin significantly (p < 0.05) increased the expression of inhibin alpha subunit (INHA), and the silencing of INHA reversed the melatonin-induced effects on Sertoli cell proliferation. We also found that melatonin activates the extracellular-regulated protein kinase (ERK) signaling pathway. To explore the role of the ERK signaling pathway in melatonin-induced cell proliferation, PD98059 (an inhibitor of EKR1/2) was used to pre-treat chicken Sertoli cells. The melatonin-induced proliferation of chicken Sertoli cells was reversed by PD98059, with decreased cell viability, weakened cell proliferation, and down-regulated expression of the proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and INHA. In summary, our results indicate that melatonin promotes the proliferation of chicken Sertoli cells by activating the ERK/inhibin alpha subunit signaling pathway.


Author(s):  
Zhenyang Si ◽  
Biao Zhang

<b><i>Background:</i></b> Cough-variant asthma (CVA) is a special type of asthma, solely manifesting with coughing. Studies suggest that airway inflammation is associated with CVA pathogenesis. Amygdalin is found to have an anti-inflammatory potential, while how it affects CVA remains unexplored. <b><i>Methods:</i></b> Cytotoxicity delivered by various concentrations of LPS and amygdalin on BEAS-2B cells was determined by Cell Counting Kit-8 assay. CVA in vitro models were established via LPS exposure on BEAS-2B cells which underwent amygdalin pretreatment. Cell apoptosis was determined by flow cytometry. Production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8, and mucin 5AC (MUC5AC) in BEAS-2B cells was measured by ELISA and qRT-PCR. Expressions of TLR4, E-cadherin, N-cadherin, α-smooth muscle actin (SMA), vimentin, phosphorylated-p65 (p-p65), p65, phosphorylated-IκBα (p-IκBα), and IκBα in BEAS-2B cells were measured by qRT-PCR or Western blot. <b><i>Results:</i></b> LPS and high concentrations of amygdalin (over 600 μg/mL) decreased BEAS-2B cell toxicity. Exposure to LPS inhibited toxicity, enhanced apoptosis; and promoted production of TNF-α, IL-6, IL-8, and MUC5AC, increased the levels of N-Cadherin, α-SMA, vimentin, p-p65, and p-IκBα, and decreased the levels of E-cadherin and IκBα in BEAS-2B cells. Amygdalin pretreatment counteracted the effects of LPS on BEAS-2B cells. Overexpressing TLR4 reversed amygdalin-exerted effects in LPS-exposed BEAS-2B cells. <b><i>Conclusion:</i></b> Amygdalin attenuated airway epithelium apoptosis, inflammation and epithelial-mesenchymal transition through restraining the TLR4/NF-κB signaling pathway in CVA.


2021 ◽  
Vol 13 (4) ◽  
pp. 44-53
Author(s):  
Jin Li ◽  
Fang Ren ◽  
Wenliang Yan ◽  
Hong Sang

Psoriasis is a common chronic, inflammatory skin disease possessing properties of inflammatory cell infiltration and excessive proliferation of keratinocytes, the occurrence and development of which remain fully elucidated. Therefore, the study was designed to determine the effects of kirenol (50, 100 and 200 μg/mL) on Cultured Human Keratinocytes (cells) (HaCaT) in vitro and reveal its molecular mechanism. The in vitro psoriasis model was established utilizing tumor necrosis factor-α (TNF-α)-stimulated HaCaT cells. Kirenol, a diterpenoid compound, was applied at different concentrations (50, 100 and 200 μg/mL) to HaCaT cells for 24 h. The Cell Counting Kit-8 (CCK-8) and thymidine monobromodeoxyuridine (BrdU) assays were used to assess cell viability and proliferation, followed by assessment of cell migration by Transwell assay. Subsequently, inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA), and Western blot assay was used to evaluate expres-sions of p65, p-p65, IκBα and p-IκBα. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) contents were measured spectrophotometrically. The results demonstrated that TNF-α induced a significant increase in cell viability and inflammatory cytokines, including expressions of Interleukin (IL)-6, IL-8, IL-22 and IL-1β in HaCaT cells, which was dose-dependently inhibited by kirenol. Similarly, TNF-α-induced cell migration was also suppressed by kirenol treatment. Furthermore, TNF-α stimuli induced the upregulation of phosphorylation levels of p65 and IκBα as well as p-p65–p65 and p-IκBα–IκBα ratios, whereas kirenol significantly suppressed the activation of cellular nuclear factor-kappa B (NF-κB) signaling pathway. In addition, kirenol significantly decreased the level of MDA but increased the levels of SOD, CAT and GSH in a dose-dependent manner. These results proposed that kirenol could inhibit the proliferation, migration, expression of inflammatory factors, and oxidative stress in HaCaT cells via suppressing NF-κB signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rosangela Montanaro ◽  
Alessio D’Addona ◽  
Andrea Izzo ◽  
Carlo Ruosi ◽  
Vincenzo Brancaleone

AbstractClodronate is a bisphosphonate agent commonly used as anti-osteoporotic drug. Throughout its use, additional anti-inflammatory and analgesic properties have been reported, although the benefits described in the literature could not solely relate to their inhibition of bone resorption. Thus, the purpose of our in vitro study is to investigate whether there are underlying mechanisms explaining the anti-inflammatory effect of clodronate and possibly involving hydrogen sulphide (H2S). Immortalised fibroblast-like synoviocyte cells (K4IM) were cultured and treated with clodronate in presence of TNF-α. Clodronate significantly modulated iNOS expression elicited by TNF-α. Inflammatory markers induced by TNF-α, including IL-1, IL-6, MCP-1 and RANTES, were also suppressed following administration of clodronate. Furthermore, the reduction in enzymatic biosynthesis of CSE-derived H2S, together with the reduction in CSE expression associated with TNF-α treatment, was reverted by clodronate, thus rescuing endogenous H2S pathway activity. Clodronate displays antinflammatory properties through the modulation of H2S pathway and cytokines levels, thus assuring the control of the inflammatory state. Although further investigation is needed to stress out how clodronate exerts its control on H2S pathway, here we showed for the first the involvement of H2S in the additive beneficial effects observed following clodronate therapy.


Sign in / Sign up

Export Citation Format

Share Document