scholarly journals In vitro evidence for the involvement of H2S pathway in the effect of clodronate during inflammatory response

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rosangela Montanaro ◽  
Alessio D’Addona ◽  
Andrea Izzo ◽  
Carlo Ruosi ◽  
Vincenzo Brancaleone

AbstractClodronate is a bisphosphonate agent commonly used as anti-osteoporotic drug. Throughout its use, additional anti-inflammatory and analgesic properties have been reported, although the benefits described in the literature could not solely relate to their inhibition of bone resorption. Thus, the purpose of our in vitro study is to investigate whether there are underlying mechanisms explaining the anti-inflammatory effect of clodronate and possibly involving hydrogen sulphide (H2S). Immortalised fibroblast-like synoviocyte cells (K4IM) were cultured and treated with clodronate in presence of TNF-α. Clodronate significantly modulated iNOS expression elicited by TNF-α. Inflammatory markers induced by TNF-α, including IL-1, IL-6, MCP-1 and RANTES, were also suppressed following administration of clodronate. Furthermore, the reduction in enzymatic biosynthesis of CSE-derived H2S, together with the reduction in CSE expression associated with TNF-α treatment, was reverted by clodronate, thus rescuing endogenous H2S pathway activity. Clodronate displays antinflammatory properties through the modulation of H2S pathway and cytokines levels, thus assuring the control of the inflammatory state. Although further investigation is needed to stress out how clodronate exerts its control on H2S pathway, here we showed for the first the involvement of H2S in the additive beneficial effects observed following clodronate therapy.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 449-449
Author(s):  
Patricia Perez ◽  
Desiree Wanders ◽  
Hannah Land ◽  
Kathryn Chiang ◽  
Rami Najjar ◽  
...  

Abstract Objectives Studies suggest that inflammation mediates the link between obesity and its comorbidities including type 2 diabetes and cardiovascular disease. Hence, there is a demand for effective alternative or complementary approaches to treat obesity-associated inflammation. The objective of this study was to determine whether consumption of blackberries (BL) and raspberries (RB) alone or in combination reduce obesity-induced inflammation. Methods In Vitro Study: RAW 264.7 macrophages were pretreated with either BL, RB, or BL + RB, each at a final concentration of 200 µg/mL for 2 h. LPS (1 ng/mL) was then added to the media for 16 h. mRNA expression of inflammatory cytokines was measured. In Vivo Study: Five-week-old mice were acclimated to a low-fat low-sucrose (LFLS) diet for one week after which mice were randomized 10 per group to one of five groups: 1) LFLS, 2) high-fat high-sucrose (HFHS), 3) HFHS + 10% BL, 4) HFHS + 10% RB, or 5) HFHS + 5% BL + 5% RB. Expression of inflammatory markers was measured in the liver as well as epididymal and inguinal white adipose tissue. Results In Vitro Study: Each berry alone and in combination suppressed the LPS-induced increase in inflammatory markers, with the combination (BL + RB) having the greatest effect. The combination suppressed LPS-induced expression of Ccl2, Tnfa, F4/80, and Il6 by 3.7−, 5.3−, 5.3−, and 4.4-fold, respectively. In Vivo Study: Gene expression analysis indicated that berry consumption had no significant effect on proinflammatory (Ccl2, Il1b, Tnfa, Il6, Itgam) or anti-inflammatory (Adipoq, Arg1, Mgl1) markers in adipose tissue depots or liver. However, relatively low gene expression of inflammatory markers in the tissues indicates that the mice fed the HFHS diet failed to develop a robust inflammatory state. Conclusions BL and RB have direct anti-inflammatory effects on immune cells. Initial analysis indicates that consumption of BL and RB has no significant effects on markers of inflammation in a diet-induced mouse model of obesity. However, it is possible that the relatively low levels of inflammation in these mice masked the anti-inflammatory potential of BL and RB. Ongoing analysis will provide additional insights into the effects of BL and RB on inflammation in these tissues. Funding Sources Lewis Foundation Award.


2016 ◽  
Vol 94 (6) ◽  
pp. 577-583 ◽  
Author(s):  
Altug Kucukgul ◽  
Suat Erdogan ◽  
Ramazan Gonenci ◽  
Gonca Ozan

In this study, the anti-oxidant and anti-inflammatory efficacy of ozone oxidative preconditioning (OOP) were investigated on hydrogen peroxide (H2O2)-induced human lung alveolar cells. In MTT and trypan blue viability tests, while 100 μmol/L H2O2caused a 17.3% and 21.9% decrease in the number of living cells, respectively, ozone at 20 μmol/L regenerated cell proliferation and prevented 9.6% and 11.0% of cell loss, respectively. In addition, H2O2decreased the transcription levels of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) 5.43-, 2.89-, and 5.33-fold, respectively, while it increased Bax, NF-κβ, TNF-α, and iNOS expression 1.57-, 1.32-, 1.40-, and 1.41-fold, respectively. Ozone pretreatment, however, increased CAT, GPx, and SOD transcription levels 7.08-, 5.17-, and 6.49-fold and decreased Bax, NF-κβ, TNF-α, and iNOS transcriptions by 1.25-, 0.76-, 3.63-, and 7.91-fold, respectively. Moreover, intracellular glutathione (GSH) level and SOD activity were decreased by 46.2% and 45.0% in the H2O2treatment group, and OOP recovered 58.5% and 20.1% of the decreases caused by H2O2. H2O2also increased nitrite levels 7.84-fold, and OOP reduced this increase by half. Consequently, OOP demonstrated potent anti-oxidant and anti-inflammatory effects on in vitro model of oxidative stress-induced lung injury.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Mohsin Sheraz Mughal ◽  
Ikwinder Preet Kaur ◽  
Ali R. Jaffery ◽  
Chang Wang ◽  
Muhammad Asif ◽  
...  

Introduction:The underlying pathophysiology of severe COVID-19 involves cytokine storm syndrome that is associated with an elevation of immunoinflammatory cytokines [1]. This hyper-inflammatory state has been implicated with coagulopathy among severely sick patients with COVID-19. Inflammation and coagulopathy are interlinked processes [2]. Coagulopathy has been associated with high mortality in COVID-19 patients [3]. LMWH is traditionally used for its anticoagulant and antithrombotic properties, however, its anti-inflammatory effect has not been fully elucidated. A study done by Shastri et al. suggested that LMWH can inhibit the release of different cytokines (IL-4, IL-5, IL-13, and TNF-α) [4]. Recent retrospective studies on COVID-19 illustrated that the LMWH (40-60 mg, subcutaneously every day) was associated with better prognosis as measured by (28 days of survival) in severely sick patients meeting sepsis-induced coagulopathy (SIC≥4) criteria compared to nonusers [5]. The potential role of escalated/therapeutic LMWH (1mg/kg/subcutaneously every 12 hours) remains unclear. This study involves a retrospective analysis of the potential role of an escalated dose of LMWH to alter the hyper-inflammatory state in hospitalized patients with COVID-19 and compared outcomes to those patients who received a low dose (40-60 mg, subcutaneously every day) of LMWH. Methods:Adult patients with confirmed SARS-CoV-2 infection by nasopharyngeal (NP) polymerase chain reaction (PCR) who were hospitalized from March 1st to April 20, 2020, were included. They were divided into two cohorts based on the dose of LMWH; cohort 1 (40-60 mg, subcutaneously every day) and cohort 2 (1mg/kg/subcutaneously every 12 hours). Categorical variables were compared by conducting a chi-square test or Fisher's exact test while continuous ones were compared by conducting a median two-sample test. Results:The median values of PT, PTT, INR, CRPmax, LDHmax, ferritinmax, D-dimermax, are mentioned in table 1. Incidence of thrombotic events (deep venous thrombosis, ischemic stroke, pulmonary embolism) was higher in cohort 1 (n=3, 4.8%) compared to cohort 2 (n=1, 2.6%). Cohort 2 had a higher number of patients who received ICU level of care (n=24) compared to the 6 patients in cohort 1. Out of 24 patients in cohort 2, 18 patients received invasive mechanical ventilation. The median value of length of stay in the hospital (10.0 days) and all-cause mortality (31.6 %) were higher in cohort 2 as compared to cohort 1 (p<0.05). Discussion:Infections have the ability to trigger systemic inflammation [6]. The interplay between the host system and its response to foreign pathogens can lead to the activation of coagulation pathways. SARS-CoV-2 entry via ACE-2 receptors on endothelial cells is likely associated with endothelial dysfunction. This endotheliopathy plays a significant role in COVID-19 related microcirculatory changes [7]. Severe COVID-19, a hyperinflammatory state, is marked by elevated inflammatory markers including D-dimer, ferritin, IL-6, LDH, and CRP levels. Elevated D-dimer levels have been correlated with disease severity and poor outcomes in hospitalized patients with COVID-19 [8]. The incidence of VTE and pulmonary embolism among COVID-19 ICU patients was higher in a study from France [9]. The patient population who received the escalated dose of LMWH in our study either had SIC score ≥ 4 or D-dimer ≥ 2.2 (FEU). This data indicated that the median value of peak inflammatory markers in cohort 1 was lower (p<0.05) when compared to cohort 2. Patients in cohort 2 were sicker than cohort 1, as evidenced by a statistically significant longer length of hospital stay and a higher rate of ICU admission. However, the potential dose-dependent anti-inflammatory effect of LMWH was not observed. Additional studies evaluating comorbidities and disease severity in both cohorts may yield different results. Conclusion:Aside from the known anticoagulant benefit of LMWH, there was no additional anti-inflammatory role with higher doses (1mg/kg/subcutaneously every 12 hours) of LMWH. Disclosures No relevant conflicts of interest to declare.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 500 ◽  
Author(s):  
Denise Beconcini ◽  
Francesca Felice ◽  
Ylenia Zambito ◽  
Angela Fabiano ◽  
Anna Maria Piras ◽  
...  

This study aimed at evaluating the anti-inflammatory effect of natural cherry extract (CE), either free or encapsulated in nanoparticles (NPs) based on chitosan derivatives (Ch-der) or poly(lactic-co-glycolic acid) (PLGA), on human umbilical vein endothelial cells (HUVEC). CE from Prunus avium L. was characterized for total polyphenols, flavonoids, and anthocyanins content. CE and CE-loaded NP cytotoxicity and protective effect on lipopolysaccharide (LPS)-stressed HUVEC were tested by water-soluble tetrazolium salt (WST-1) assay. Pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10, and PGE2) released by HUVEC were quantified by enzyme-linked immunosorbent assay (ELISA). All NP types were internalized into HUVEC after 2 h incubation and promoted the anti-inflammatory effect of free CE at the concentration of 2 µg gallic acid equivalents (GAE)/mL. CE-loaded Ch-der NPs showed the highest in vitro uptake and anti-inflammatory activity, blunting the secretion of IL-6, TNF-α, and PGE2 cytokines. Moreover, all NPs reduced the production of nitric oxide and NLRP3 inflammasome, and had a stronger anti-inflammatory effect than the major corticosteroid dexamethasone. In particular, the results demonstrate that natural CE protects endothelial cells from inflammatory stress when encapsulated in NPs based on quaternary ammonium chitosan. The CE beneficial effects were directly related with in vitro internalization of CE-loaded NPs.


Nanomedicine ◽  
2020 ◽  
Vol 15 (30) ◽  
pp. 2955-2970
Author(s):  
Jin-Ying Wong ◽  
Zhao Yin Ng ◽  
Meenu Mehta ◽  
Shakti D Shukla ◽  
Jithendra Panneerselvam ◽  
...  

Aim: In this study, curcumin was encapsulated in niosomes (Nio-Curc) to increase its effectiveness for the treatment of asthma. Materials & methods: The formulation underwent various physicochemical characterization experiments, an in vitro release study, molecular simulations and was evaluated for in vitro anti-inflammatory activity. Results: Results showed that Nio-Curc had a mean particle size of 284.93 ± 14.27 nm, zeta potential of -46.93 and encapsulation efficacy of 99.62%, which demonstrates optimized physicochemical characteristics. Curcumin release in vitro could be sustained for up to 24 h. Additionally, Nio-Curc effectively reduced mRNA transcript expression of pro-inflammatory markers; IL-6, IL-8, IL-1β and TNF-α in immortalized human airway basal cell line (BCi-NS1.1). Conclusion: In this study, we have demonstrated that Nio-Curc mitigated the mRNA expression of pro-inflammatory markers in an in vitro study, which could be applied to treatment of asthma with further studies.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 825
Author(s):  
Mohammad Khalid ◽  
Mohammed H. Alqarni ◽  
Ambreen Shoaib ◽  
Muhammad Arif ◽  
Ahmed I. Foudah ◽  
...  

The fruits of Spondias mangifera (S. mangifera) have traditionally been used for the management of rheumatism in the northeast region of India. The present study explores the probable anti-arthritis and anti-inflammatory potential of S. mangifera fruit extract’s ethanolic fraction (EtoH-F). To support this study, we first approached the parameters in silico by means of the active constituents of the plant (beta amyrin, beta sitosterol, oleonolic acid and co-crystallised ligands, i.e., SPD-304) via molecular docking on COX-1, COX-2 and TNF-α. Thereafter, the absorption, distribution, metabolism, excretion and toxicity properties were also determined, and finally experimental activity was performed in vitro and in vivo. The in vitro activities of the plant extract fractions were evaluated by means of parameters like 1,1-Diphenyl-2- picrylhydrazyl (DPPH), free radical-reducing potential, albumin denaturation, and protease inhibitory activity. The in vivo activity was evaluated using parameters like COX, TNF-α and IL-6 inhibition assay and arthritis score in Freund Adjuvant (CFA) models at a dose of 400 mg/kg b.w. per day of different fractions (hexane, chloroform, alcoholic). The molecular docking assay was performed on COX-1, COX-2 and TNF-α. The results of in vitro studies showed concentration-dependent reduction in albumin denaturation, protease inhibitors and scavenging activity at 500 µg/mL. Administration of the S. mangifera alcoholic fraction at the abovementioned dose resulted in a significant reduction (p < 0.01) in arthritis score, paw diameters, TNF-α, IL-6 as compared to diseased animals. The docking results showed that residues show a critical binding affinity with TNF-α and act as the TNF-α antagonist. The alcoholic fraction of S. mangifera extract possesses beneficial effects on rheumatoid arthritis as well as anti-inflammatory potential, and can further can be used as a possible agent for novel target-based therapies for the management of arthritis.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 851
Author(s):  
Shih-Yi Lin ◽  
Ya-Yu Wang ◽  
Cheng-Yi Chang ◽  
Chih-Cheng Wu ◽  
Wen-Ying Chen ◽  
...  

Hyperglycemia and inflammation, with their augmented interplay, are involved in cases of stroke with poor outcomes. Interrupting this vicious cycle thus has the potential to prevent stroke disease progression. Tumor necrosis factor-α (TNF-α) is an emerging molecule, which has inflammatory and metabolic roles. Studies have shown that TNF-α receptor inhibitor R-7050 possesses neuroprotective, antihyperglycemic, and anti-inflammatory effects. Using a rat model of permanent cerebral ischemia, pretreatment with R-7050 offered protection against poststroke neurological deficits, brain infarction, edema, oxidative stress, and caspase 3 activation. In the injured cortical tissues, R-7050 reversed the activation of TNF receptor-I (TNFRI), NF-κB, and interleukin-6 (IL-6), as well as the reduction of zonula occludens-1 (ZO-1). In the in vitro study on bEnd.3 endothelial cells, R-7050 reduced the decline of ZO-1 levels after TNF-α-exposure. R-7050 also reduced the metabolic alterations occurring after ischemic stroke, such as hyperglycemia and increased plasma corticosterone, free fatty acids, C reactive protein, and fibroblast growth factor-15 concentrations. In the gastrocnemius muscles of rats with stroke, R-7050 improved activated TNFRI/NF-κB, oxidative stress, and IL-6 pathways, as well as impaired insulin signaling. Overall, our findings highlight a feasible way to combat stroke disease based on an anti-TNF therapy that involves anti-inflammatory and metabolic mechanisms.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582096172
Author(s):  
Ilaria Floris ◽  
Thorsten Rose ◽  
Juan Antonio Collado Rojas ◽  
Kurt Appel ◽  
Camille Roesch ◽  
...  

Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are pro-inflammatory cytokines involved in acute and chronic inflammatory diseases. Indeed, immunotherapy blocking these 2 cytokines has been developed. Micro-immunotherapy (MI) also uses ultra-low doses (ULD) of pro-inflammatory cytokines, impregnated on lactose-sucrose pillules, to counteract their overexpression. The study has been conducted with 2 objectives: examine the anti-inflammatory effect in vitro and the capacity of 2 unitary medicines, TNF-α (27 CH) and IL-1β (27 CH), to reduce the secretion of TNF-α in human primary monocytes and THP-1 cells differentiated with phorbol-12-myristate-13-acetate, after lipopolysaccharide (LPS) exposure; then, investigate the presence of particles possibly containing starting materials using tunable resistive pulse sensing technique. The results show that the unitary medicines, tested at 3 pillules concentrations (5.5, 11 and 22 mM), have reduced the secretion of TNF-α in both models by about 10−20% vs. vehicle control, depending on concentration. In this exploratory study, particles (150−1000 nm) have been detected in MI ULD-impregnated pillules and a hypothesis for MI medicines mode of action has been proposed. Conscious that more evaluations are necessary, authors are cautious in the conclusions because the findings described in the study are still limited, and future investigations may lead to different hypothesis.


Sign in / Sign up

Export Citation Format

Share Document