scholarly journals Heavy Metal Accumulation in Cockscomb (Celosia Argentea Linn) Grown in Soil Amended With Chicken Manure

Author(s):  
Oladele Abdulahi Oguntade ◽  
Nosiru Monday Yisa ◽  
Solomon Oladimeji Olagunju ◽  
Olufemi Sunday Sosanya ◽  
Abiodun Oladipupo Joda ◽  
...  

Abstract Heavy metals such as Cadmium (Cd), Copper (Cu) and Manganese (Mn) in chicken manure can contaminate soil and bioaccumulate in edible tissues of plant to cause food chain contamination. This study investigated the influence of chicken manure on heavy metal load of soil and accumulation in tissues of Celosia argentea. Air-dried chicken manure from battery cages (conventional chicken manure-CCM) and free range birds (local chicken manure-LCM) were used for the pot culture. Chicken manure was applied as amendment at the rate of 0, 4, 6, 8 and 10 t ha-1 in 5 kg soil. Treatments were replicated trice in a Completely Randomized Design. Results showed that soil metal pollution increased with rates of amendment. Metal pollution indices; contamination factor, degree of contamination, elemental pollution index, pollution load index and total contamination factor were significantly (p < 0.001) higher in soil amended with CCM than LCM. Bioaccumulation coefficients (BAC), bioaccumulation factor (BAF) and transfer factor (TF) of metals were higher in tissues of celosia grown with CCM than LCM. Furthermore, above 4 t ha-1, growth and yield were not significantly influenced by amendment rates. Mobility of metals from soil to tissues of celosia increased in the order Cu > Mn > Cd. Chicken manure above 4 t ha-1 potent health risks of Cu exposure to consumers of celosia.

Author(s):  
Defri Yona ◽  
Syarifah Hikmah Julinda Sari ◽  
Anedathama Kretarta ◽  
Citra Ravena Putri Effendy ◽  
Misba Nur Aini ◽  
...  

This study attempted to analyze the distribution and contamination status of heavy metals (Cu, Fe and Zn) along western coast of Bali Strait in Banyuwangi, East Java. Bali Strait is one of the many straits in Indonesia with high fisheries activities that could potentially contributed to high heavy metal pollution. There were five sampling areas from the north to south: Pantai Watu Dodol, Pantai Kalipuro, Ketapang Port, Pantai Boom and Muncar as the fish landing area. Heavy metal pollution in these locations comes from many different activities such as tourism, fish capture and fish industry and also domestic activities. Contamination factor (CF), geo-accumulation index (Igeo) and enrichment factor (EF) of each heavy metal were calculated to obtain contamination status of the research area. The concentrations of Fe were observed the highest (1.5-129.9 mg/kg) followed by Zn (13.2-23.5 mg/kg) and Cu (2.2-7.8 mg/kg). The distribution of Cu, Fe and Zn showed variability among the sampling locations in which high concentrations of Cu and Zn were higher in Ketapang Port, whereas high concentration of Fe was high in almost all sampling locations. According to the pollution index, contamination factors of Cu, Fe and Zn were low (CF < 1 and Igeo < 1). However, high index of EF (> 50) showed high influence of the anthropogenic activities to the contribution of the metals to the environment. This could also because of the high background value used in the calculation of the index due to the difficulties in finding background value from the sampling areas.Keywords: heavy metals, pollution index, contamination factor, geo-accumulation index, Bali Strait


Author(s):  
Josephine Ndjama George Mafany ◽  
Biram Eric Belmond Yvette Clarisse Mfopou Mewouo ◽  
Carine Tarkang Amina Aboubakar ◽  
Opportune Léonelle Apohkeng Dongmo Armel Zacharie Ekoa Bessa

An integrated pollution assessment index approach was used to assess the application of heavy metal pollution indices in the Ngoua watershed in southwestern (SW) Cameroon. The concentrations of Pb, Cr, Cu, Ni, Zn, Mo, Fe and Al in most of the water samples exceeded the maximum allowable concentration recommended by the World Health Organization (WHO). The Heavy Metal Evaluation Index (HEI) shows strong correlations with the Heavy Metal Pollution Index (HPI), Metal Index (MI) and the degree of contamination (Cd), and gives a better assessment of the pollution levels. Selected samples from the 10 sampling stations were classified as high polluted in Cd, MI and HPI in relation to the respective critical values. These values show comparable results to those of the HEI and indicate that about 88% of the samples with above average values were classified as highly contaminated and the remaining samples (12%) with below average values were classified as moderately contaminated. The Enrichment Factor (EF) analysis and the pollution indices reveal that the water quality is mainly controlled by natural and geogenic processes with major anthropogenic input. The current level of heavy metal distribution in the water of the Ngoua catchment is an environmental and health concern and requires special attention.


2017 ◽  
Vol 14 (3-4) ◽  
Author(s):  
Nusreta Djonlagic

In this study the results of a 15-year long monitoring survey on heavy metals in water at Lake Modrac were assessed using pollution indices of heavy metals, such as Heavy metal pollution index HPI, Heavy metal evaluation index HEI and the Degree of contamination CD. The results of the survey on heavy metal pollution of sediment conducted in 2015 were used as input data for the following pollution indices: Concentration factor , Pollution load index PLI, Enrichment factor EF, Index of geo-accumulation Igeo, Ecological risk factor , Potential ecological risk index to the water-body, RI. The results showed a good correlation and the lake sediment was characterized as polluted. Enrichment factors and indices of geo-accumulation of heavy metals were indicated as very high enriched in the sediment, and have been identified as an anthropogenic source of pollution. Cumulative presence in the sediment is assessed through the pollution index, RI, and has been assessed as moderate ecological risk to the lake water-body. The application of pollution indices presents a valuable tool in assessing the long-term pollution status of Lake Modrac.


2019 ◽  
Vol 24 (5) ◽  
pp. 55
Author(s):  
Mahmood Fadhil Abed1 ◽  
Salwa Hadi Ahmed2

This research has investigated the quality of surface water at Baiji district of Salah Alden governorate based on 5 sampling stations for two season (September 2012 and April 2013). Water evaluation indices (i.e. heavy metal pollution index (HPI), heavy metal evaluation index (HEI) and contamination degree index (Cd)) are utilized to characterize the quality of water in term of drinking purposes. All values of HPI were lower than (15), suggesting low heavy metal pollution. The values of HEI were also less than (10), indicating low heavy metal pollution, whereas Cd values were much less than (1) for all stations, indicating low heavy metal pollution. Consequently, Tigris River water in the study area is suitable for drinking purposes in terms of heavy metal pollution.    http://dx.doi.org/10.25130/tjps.24.2019.089


2021 ◽  
Vol 9 (6) ◽  
pp. 813-822
Author(s):  
Serine OMRANIA ◽  
Najib EL KHODRANI ◽  
Mbark LAHMAR ◽  
Ahmed DOUAIK ◽  
Hamza IAAICH ◽  
...  

M’nasra region is well known for increasing levels of heavy metal pollution in the environment, mainly due to waste discharge of Ouled Berjal, the irrational use of fertilizers, and the discharge of waste from several industries. The objective of this study was to access the seasonal variations in the groundwater and soil quality with respect to heavy metal pollution. Water samples from wells and samples from soil near them were taken during wet (January - March 2017) and dry (July 2017) seasons and concentrations of Cd, Cu, Cr, Mn, Ni, Pb, and Zn were determined using an Atomic Absorption Spectrophotometer (AAS). Contamination factor for each heavy metal and Nemerow pollution index was calculated. Results of the study revealed a decrease in pollution degree from wet to dry for soil and an increase in the case of groundwater. Cu had the lowest and Ni had the highest concentration in irrigation water whereas, for soil, Cd had the lowest and Zn had the highest concentration. During the wet season, all the concentrations of heavy metals decreased compared to the dry season, this can be explained by the dilution of these concentrations by precipitation water and therefore to lower absorption of these heavy metals in the water of irrigations and/or soil. Vertical transfer of pollutants from topsoil to groundwater was assessed using Hierarchical Cluster Analysis to identify associations between heavy metals and soil texture. In the case of Ni and Cr, the variables corresponding to the concentrations from soil and groundwater were part of the same cluster, in both seasons, the distribution maps of concentrations confirmed the pattern of transfer. This study can be considered as a baseline for the seasonal variation of heavy metal pollution of groundwater and soil. This study can be used not only for monitoring the study area but also as a tool for the implementation of environmental protection policies.


2019 ◽  
Vol 1 ◽  
pp. 186-195
Author(s):  
A A Tyovenda ◽  
S I Ikpughul ◽  
T Sombo

Heavy metal pollution of water, sediments and Algae in the upper region of River Benue at Jimeta-Yola, Adamawa state, Nigeria was assessed. The concentrations of the heavy metals (Pb, Hg, Ni, Cu, Cr, Zn, Mn, Fe) in the samples were analyzed using Atomic Adsorption Spectrometer. Pollution parameters such as enrichment factor, contamination factor, pollution load index and geo-accumulation index were evaluated. The result of heavy metal analysis showed that, the concentration (ppm) of the metals in water samples ranged as follows: Pb(0.25-0.50), Hg(0.00-2.00), Ni(0.10-0.31), Cu(0.03-0.13), Cr(0.00-1.33), Zn(0.01-0.04), Mn(0.03-0.06) and Fe(105.15-118.75) respectively. This result when compared with the EPA maximum permissible limits for drinking water showed that, all the metals except Cu and Zn had values above the permissible limits. The evaluation of enrichment factor revealed that, Hg showed extremely high enrichment while Pb showed significant enrichment for Algae, water and sediment samples. The contamination factor showed low contamination for all metals except Hg which showed considerable contamination for sediments, water and Algae samples. The pollution load index for sediments, water and Algae indicated no pollution. The geo-accumulation index of the metals in sediments, water and Algae indicates no or minimal pollution. The samples were enriched with Hg and Pb. These metals are capable of causing various types of cancer, brain and kidney damage among other ailments.


2018 ◽  
Vol 13 (1) ◽  
pp. 159-164
Author(s):  
Arti Yadav ◽  
Pawan Kumar Yadav

Wastewater irrigation is practiced in outskirts of several cities of India. Enhanced growth and productivity of crops possess threat of heavy metal accumulation while irrigated with wastewater. Assessment of heavy metal accumulation in soil flooded with wastewater of Mawaiya drain in Naini region of Allahabad district, using parameter of contamination factor and pollution load index (PLI). Samples of soil were taken from the fields irrigated with wastewater and analyzed for heavy metals by using Atomic Absorption Spectroscopy (AAS). The maximum accumulation of heavy metal was observed for iron in soil. Heavy metal contamination is soil was assessed by estimation of contamination factor which was observed for Cu (0.7858), Fe (296.1864), Zn (0.4304), Pb (1.1661) and Ni (1.8912). Pollution load index (PLI) used for assessment of soil contamination and observed that maximum contamination (PLI, 74.31) was in water stressed conditions of summer. Heavy metals concentration in wastewater and accumulation in soil found within WHO limits in present study which may increase if unmanaged wastewater flooding continued.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1140
Author(s):  
Katarzyna Sutkowska ◽  
Leslaw Teper ◽  
Tomasz Czech ◽  
Tomasz Hulok ◽  
Michał Olszak ◽  
...  

Pollution indices are used to assess the influence of the bedrock as a natural source of heavy-metal (HM), and anthropogenic pollution from ore mining in soils developed from ore-bearing carbonates. The research was conducted in two areas differing in geological setting and type of land use in the Upper Silesia Industrial Region, Southern Poland. Physical properties such as pH, total sulfur, total carbon and total organic carbon values, as well as total Zn, Pb, and Cd contents (ICP-OES) for 39 topsoil samples were measured. Contamination factor (Cf), degree of contamination (Cdeg), pollution load index (PLI) and geoaccumulation index (Igeo), were used to determine the deterioration of topsoil due to HM pollution. The HM content exceeded geochemical background levels by 2.5–18.1 times. Very high to moderate topsoil contamination was determined. In a shallow historical mining zone, the relative influence of particular HM was found to be in the order of Pb > Cd > Zn and, in a deep mining zone, Zn > Cd > Pb. In the topsoil developed over shallow ore bodies, the HM content was mainly (60%) due to naturally occurring HM. In the area of deeply buried ore bodies, 90% of the HM load was related to anthropogenic sources. Zn, Pb and Cd vertical distributions and the patterns of topsoil pollution differ in terms of types of mined ores, mining methods and times elapsed since mining ceased. Pollution indices are an efficient tool for distinguishing soil anthropogenic pollution and geogenic contamination.


2021 ◽  
Vol 3 (1) ◽  
pp. 6-14
Author(s):  
A.I. Mohammed ◽  
A.A. Ahmed ◽  
J.U. Jibrin

Heavy metal pollution is a global issue of concern which results from both biogenic and anthropogenic activities. Hence, an investigation of soil pollution is pertinent because of its potential threat to human health. The present study examined the concentrations, contamination and pollution load index cum ecological risk factor for some heavy metals in soil samples collected from Borno Express (BOEXP), Tashan Kano (TASKP) and Tashan Bama (TASBP) motor parks within Maiduguri, Borno state of Nigeria. The data obtained showed mean concentration range of 0.34 - 1.18 mg/kg, 0.04 - 0.15 mg/kg, 0.07 - 0.41 and 0.18 - 0.29 mg/kg for Zn, Cr, Cd and Cu respectively. Nonetheless, lead was not detected in any and all samples analyzed. The increasing order of concentrations in the soils followed: Zn > Cu > Cr > Cd, Cu > Cd > Zn > Cr and Cd > Zn > Cu > Cr for BOEXP, TASKP and TASBP motor parks respectively. Notwithstanding, the results showed lower concentrations to the allowable limits of World Health Organization (WHO). Furthermore, the contamination factor of cadmium in the TASKP fell within the (0.10 – 0.25) category, indicative of slight contamination whereas in TASBP, the calculated value 0.5125 was within (0.51 -0.75) category implying severe contamination. The other heavy metals analyzed showed contamination factor as well as pollution index values < 0.1 indicative of very slight contamination.Keywords: Borno Express, Tashan Kano, Tashan Bama, Motor Parks, Contamination Index.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Hassan Hamidu ◽  
Falalu B. Halilu ◽  
Kwaya M. Yerima ◽  
Lawal M. Garba ◽  
Arabi A. Suleiman ◽  
...  

Abstract The present study focused on pollution status of groundwater in the industrial areas of Challawa and Sharada in Kano city based on pollution indices, statistical and spatial analyses. Twenty groundwater samples representing groundwater of the studied areas (Ten from each area) were analyzed for the presence of Cd, Cr, Ni, Fe, Mn and Zn using atomic absorption spectrophotometer. The result showed 95%, 5%, 60%, 15% and 25% of the analyzed water samples had detectable Cd, Cr, Ni, Fe, and Mn above the drinking water limits of both Nigerian standards for drinking water quality NSDWQ and World Health Organization (WHO) with Cd dominating other analyzed heavy metals in the groundwater. Evaluation of heavy metal pollution revealed a low polluted status based on the contaminant index (Cd), synthetic pollution index, heavy metals evaluation index, and heavy metal pollution index. Metal index categorized the groundwater as seriously polluted. The statistical evaluation gave strong and positive correlations between indices and a moderate one between the metallic ions. Component analysis revealed a strongly positive loading of Fe, Ni and Zn while Cd had a strong negative loading. Cr and Mn were positive and moderately loaded. Statistical analyses suggested both anthropogenic and geogenic sources for the heavy metals mainly from the industrial and agricultural practices and rock weathering processes, respectively. This study is expected to be a useful tool in the planning, monitoring and mitigation of pollution activities in the area. Article Highlights The pollution status of groundwater with respect to heavy metals was investigated in the Challawa and Sharada industrials zones in Kano city Nigeria The concentration of Cd, Fe, Ni, Cr Mn and Zn was determined using the AAS Different Pollution indices of HPI, HEI, SPI, Cd and MI were utilized to categorized the area as low, medium and highly polluted. Spatial and temporal distribution maps demarcated based on the metal concentrations and computed indices in the area. CA, PCA, and HCA were used to identified the geochemistry, relationship, sources and origin of heavy metals in groundwater. The study revealed zones with low to high-risk groundwater in terms of toxic heavy metals and pollution status.


Sign in / Sign up

Export Citation Format

Share Document