scholarly journals Optimization of Conditions For Increasing of Saffron Cell Biomass And Crocin Production In Stirred Bioreactor

Author(s):  
Somaye Amini ◽  
Seyed Mahdi Ziaratnia ◽  
Khodayar Hemmati

Abstract Bioreactors provide suitable conditions for the growth of cells and production of secondary metabolites by regulating physical and chemical factors. In this study, first, sucrose, 2-(N-morpholino) ethanesulfonic acid (MES) as a buffering agent and medium pH was optimized in the Erlenmeyer flask. This aim was then pursued in a stirred bioreactor through aeration and pH medium adjustment. Results of the first step showed that Schenk and Hildebrandt (SH) basal medium with naphthalene acetic acid (2 mg.l-1) and 6-benzylaminopurine (1 mg.l-1) supplemented with 2.5 mM of MES and gradually increment of sucrose from 3 to 6% caused to catch the highest cell biomass and crocin production. The spectrophotometry measurement showed that the highest crocin content of the cells was 0.8 mg/g after five weeks. The results of the second part revealed that in the stirred bioreactor, constant pH (5.8) during the growth period is a limited factor for the cell growth and crocin production. Although aeration initially found to be an inhibited factor for the production of crocin, results showed that, if the evaporated volume of water caused by aeration is constituted, it can be an effective factor to increase cell growth rate around 2 folds. In addition, total crocin content of the cells, based on the HPLC could be raised up to 2 mg/g. Based on this study, it can be concluded that MES and gradual increment of sucrose could increasing the cell growth and crocin production. Aeration in bioreactor can increase cell biomass, if the medium volume will be kept constant.

2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
George A. Thouas ◽  
John Sheridan ◽  
Kerry Hourigan

The present study represents an investigation of a novel stirred bioreactor for culture of a transformed cell line under defined hydrodynamic conditions in vitro. Cell colonies of the EL-4 mouse lymphoma cell line grown for the first time in a rotating disc bioreactor (RDB), were observed to undergo changes in phenotype in comparison to standard, static flask cultures. RDB cultures, with or without agitation, promoted the formation of adherent EL-4 cell plaques that merged to form contiguous tumor-like masses in longer-term cultures, unlike the unattached spheroid aggregates of flask cultures. Plaques grown under agitated conditions were further altered in morphology and distribution in direct response to fluid mechanical stimuli. Plaque colonies growth in RDBs with or without agitation also exhibited significant increases in production of interleukin-4 (IL-4) and lactate, suggesting an inducible “Warburg effect.” Increases in cell biomass in RDB cultures were no different to flask cultures, though a trend toward a marginal increase was observed at specific rotational speeds. The RDB may therefore be a suitable alternative method to study mechanisms of tumor progression and invasiveness in vitro, under more complex physicochemical conditions that may approximate natural tissue environments.


2015 ◽  
Vol 44 ◽  
pp. 38-44 ◽  
Author(s):  
H. Sandhya ◽  
Rao Srinath

Suitable protocol for induction of callus and regeneration was developed from different explants viz., node, stem and leaves in Physalis minima. MS basal medium supplemented with various concentrations (1.0-4.0mg/l) of auxins like 2,4-Dichlorophenoxy acetic acid (2,4-D), α-naphthalene acetic acid (NAA) and Indole-3-acetic acid (IAA) and cytokinins (0.5-1.5mg/l) like BAP or Kn were used. All the three explants responded for induction of callus, however stem explants were found superior, followed by node and leaf. Callus induction was observed in all the auxins and combination of growth regulators used with varied mass (2010±1.10) and highest percentage of callus induction was observed from stem at 2.0mg/l 2,4-D (90%) followed by NAA (70%) and IAA (50%). Organogenesis was induced when nodal explants were transferred on MS medium supplemented with 2,4-D and Kn at various concentrations, maximum being on 2.0mg/l 2,4-D + 1.0mg/l Kn (90%). Regenerated shoots were elongated on 0.5mg/l GA3. The shoots were subsequently rooted on MS + 1.0mg/l IBA (95%) medium. Rooted shoots were hardened and acclimatized, later they were transferred to polycups containing soil, cocopeat and sand in the ratio 1:2:1.Keywords:Physalis minima, Node, Stem, Leaf, callus and growth regulators.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Yupi ISNAINI ◽  
Titien Ngatinem Praptosuwiryo

Abstract. Isnaini Y, Praptosuwiryo TNg. 2020. In vitro spore germination and early gametophyte development of Cibotium barometz (L.) J. Sm. in different media. Biodiversitas 21: 5373-5381. Cibotium barometz (L.) J. Sm. is known as the golden chicken fern and included in Appendix II of CITES. It is an important export commodity for traditional and modern medicine. Globally, populations of this species are under significant pressure due to overexploitation in the wild. In vitro culture is one of the technologies used for ex-situ propagation and conservation of rare and endangered ferns and lycophytes. This study’s objectives were: (i) to observe in vitro spore germination and early gametophyte development of C. barometz, and (ii) to determine the best culture medium for rapid spore germination and early development of the gametophytes. The sterilized spores were sown in half-strength Murashige & Skoog (½MS) basal medium supplemented with combinations of 6-Benzylaminopurine (BAP) and α-Naphthalene acetic acid (NAA). A factorial combination of four BAP concentrations (0, 2, 4, and 6 mg L-1) with four concentrations of NAA (0; 0.01; 0.03 and 0.05 mg L-1) created 16 treatments replicated in a Completely Randomized Design. Spore germination of C. barometz was observed to be Vittaria-type, and its prothallial development was Drynaria-type. Spore germination started 7-14 days after sowing. Young heart-shape gametophytes consisting of 110-240 cells were formed in 45-61 days after sowing. The two best spore culture media for rapid spore germination and development of C. barometz gametophytes were ½ MS with or without 2 mg L-1 BAP.


2021 ◽  
Vol 6 (1) ◽  
pp. 31-40
Author(s):  
Yustiny Andaliza Hasibuan ◽  
Diah Ratnadewi ◽  
Zainal Alim Mas’ud

Cinchona alkaloids are known as antimalaria and anti-arrhythmic. Due to the long waiting time to harvest, cell culture technology is a challenge. This study aimed to determine the effects of elicitors, filtrate of two strains of endophytic fungi and methyl jasmonate (MeJA), in cell suspension culture of Cinchona ledgeriana on quinine and quinidine production. The cells were cultured for seven weeks in woody plant (WP) media treated with either of those elicitors in various concentrations. The cells growth was observed and the alkaloids were analyzed by HPLC. Cells treated with MeJA failed to grow that led to the cell biomass insufficiency for alkaloids determination.  It indicates that the cells are quite sensitive to even low concentration of MeJA that hampered the growth. Cells treated with the filtrate of Diaporthe sp. M13-Millipore filtered (S2M) gave the least cell biomass but presented the highest content of both alkaloids. Diaporthe sp. strain M-13 is stronger as elicitor than M-23 for this plant species. Filtrate of non-virulent fungi can elevate the biosynthesis of alkaloids. This reconfirms that cultured cells are capable to produce secondary metabolites and the productivity can be increased by using an appropriate elicitor.  


1998 ◽  
Vol 20 (20) ◽  
pp. 131
Author(s):  
Elcí Terezinha Henz Franco ◽  
Cinara Echart Almeida

Petiole explants of Begonia rex were cultured on basal medium (MURASHIGE & SKOOG, 1962). The medium was suplemented with naphthalene acetic acid (0.01; 0.1 and 0.5 mg/I) and kinetin ( 0.1; 0.2; 0.5 and 1.0 mg/I). In these experiments, were as also used coconut water (15% and 20%) or potato extract ( 15% and 20%). Buds were formed in several treatments, but the best combination was coconut water 0.01 mg/L NAA and 0.1 mg/I KIN. Whole plants (40% of the explants) were obtained when was added coconut water . The optimal combination for plant regeneration (100%) was 0.01 mg/I NAA plus 0.1 mg/I KIN.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1321
Author(s):  
Kwanruthai Malairuang ◽  
Morakot Krajang ◽  
Jatuporn Sukna ◽  
Krongchan Rattanapradit ◽  
Saethawat Chamsart

High cell density cultivation (HCDC) is developed for the production of microbial biomasses and their products. They must be produced from high concentrations of substrate, e.g., glucose or sucrose. In batch culture, a high concentration of those sugars >40–50% (w/v) cannot efficiently be utilized because of a dissolved O2 limitation causing the Crabtree effect that produces toxic by-products, i.e., ethanol and/or acetate, that inhibit cell growth. To prevent this effect, the HCDC is conducted with the fed-batch strategies. However, it has many disadvantages, i.e., complicated operations. To overcome those problems, this study was designed to use a new, efficient C-source (carbon source) substrate, namely dextrin, an oligomer of glucose. It can be utilized by yeast at a very high concentration of ~100 g/L although using just batch cultivation. As it is gradually hydrolyzed to release glucose molecules and gradually assimilated into the cells as “fed-batch at the cell level” (FBC), it prevents the yeast cell system from undergoing the Crabtree effect. In this research, the types of medium, the types of sugar compared with dextrin, and the concentrations of yeast extract (YE) were studied. The batch production medium (BPM) with dextrin and YE performed very good results. The concentrations of dextrin for yeast cultivation were studied in the aerobic batch 5-L bioreactors. Its optimum concentration was at 90 g/L with 9 g/L of YE in 3× BPM. It was operated at 3 W/kg energy dissipation rate per unit mass (ε¯T) and 3 vvm airflow rate. Further, the intensive multiple sequential batch (IMSB) technique of high intensities of agitation speed and airflow was developed to achieve higher yield and productivity. The maximum values of cell biomass, specific growth rate, yield coefficient, productivity, and efficiency were at 55.17 g/L, 0.21 h−1, 0.54 g/g, 2.30 g/L/h, and 98.18%, respectively. The studies of cell growth kinetics, biochemical engineering mass balances, and fluid dynamics for the design of impeller speeds of the 5-L bioreactors during the cultivations of yeast using dextrin at the high concentrations were successful. The results can be used for the scale-up of bioreactor for the industrial production of yeast cell biomass at high concentrations.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2607 ◽  
Author(s):  
Nursyafiqah A. Mohamad Zabidi ◽  
Hooi Ling Foo ◽  
Teck Chwen Loh ◽  
Rosfarizan Mohamad ◽  
Raha Abdul Rahim

Lactobacillus plantarum RI 11 was reported recently to be a potential lignocellulosic biomass degrader since it has the capability of producing versatile extracellular cellulolytic and hemicellulolytic enzymes. Thus, this study was conducted to evaluate further the effects of various renewable natural polymers on the growth and production of extracellular cellulolytic and hemicellulolytic enzymes by this novel isolate. Basal medium supplemented with molasses and yeast extract produced the highest cell biomass (log 10.51 CFU/mL) and extracellular endoglucanase (11.70 µg/min/mg), exoglucanase (9.99 µg/min/mg), β-glucosidase (10.43 nmol/min/mg), and mannanase (8.03 µg/min/mg), respectively. Subsequently, a statistical optimization approach was employed for the enhancement of cell biomass, and cellulolytic and hemicellulolytic enzyme productions. Basal medium that supplemented with glucose, molasses and soybean pulp (F5 medium) or with rice straw, yeast extract and soybean pulp (F6 medium) produced the highest cell population of log 11.76 CFU/mL, respectively. However, formulated F12 medium supplemented with glucose, molasses and palm kernel cake enhanced extracellular endoglucanase (4 folds), exoglucanase (2.6 folds) and mannanase (2.6 folds) specific activities significantly, indicating that the F12 medium could induce the highest production of extracellular cellulolytic and hemicellulolytic enzymes concomitantly. In conclusion, L. plantarum RI 11 is a promising and versatile bio-transformation agent for lignocellulolytic biomass.


2019 ◽  
Vol 9 (5) ◽  
pp. 910
Author(s):  
Shaleena Pazhanimala ◽  
Driton Vllasaliu ◽  
Bahijja Raimi-Abraham

The scaffold technology research utilizes biomimicry to produce efficient scaffolds that mimic the natural cell growth environment including the basement membrane for tissue engineering. Because the natural basement membrane is composed of fibrillar protein networks of nanoscale diameter, the scaffold produced should efficiently mimic the nanoscale topography at a low production cost. Electrospinning is a technique that can achieve that. This review discusses the physical and chemical characteristics of the basement membrane and its significance on cell growth and overall focuses on nanoscale biomimetic synthetic membrane scaffolds primarily generated using electrospinning and their application in drug delivery and tissue engineering.


2004 ◽  
Vol 845 ◽  
Author(s):  
Benita M. Comeau ◽  
Yusif Umar ◽  
Kenneth E. Gonsalves ◽  
Clifford L. Henderson

ABSTRACTThe overall goal of our work is to develop new methods and materials for the fabrication of hierarchically structured, three-dimensional (3D) tissue scaffolds. Conventional scaffolds commonly lack substantial mechanical strength, and there is difficulty in controlling porosity, pore distribution, and pore interconnectivity. Additionally, the chemical nature of these scaffolds is typically homogenous. The ability to chemically modify selected areas on a scaffold is one method to direct cell growth in deliberate patterns; which could aid in the engineering of complex, functioning tissues. The general aim of this work is to address these issues through the application of stereolithography (SL) to the fabrication of hierarchically structured scaffolds.In order to achieve this goal, photopolymerizable materials must be developed that are both compatible with cell growth and with SL processing. SL methods are designed to produce arbitrary control over the physical structure of the part. In addition to physical structure control, control over the local surface chemistry of the scaffold is also desired. This would permit the use of both physical and chemical cues to control cell behavior in a tissue engineering construct. Chemical control could be achieved in SL methods by using photopolymerizable materials that can also be selectively chemically modified during the SL part building process. This paper provides an update on our work directed at using combined photoradical initiated polymerization and photoacid generator based chemical modification of a polymeric scaffold via multi-wavelength SL to produce hierarchically structured scaffolds.


Sign in / Sign up

Export Citation Format

Share Document