scholarly journals Keratin is not only a Structural Protein in Hair: Keratin-mediated Hair Growth

Author(s):  
Seong Yeong An ◽  
Eun Ji Choi ◽  
So Yeon Kim ◽  
Se Young Van ◽  
Han Jun Kim ◽  
...  

Abstract Keratin is known to be a major protein in hair, but the biological function of keratin in hair growth is unknown, which led us to conduct a pilot study to elucidate biological function of keratin in hair growth via cellular interactions with hair forming cells. Here, we show hair growth is stimulated by intradermal injection of keratin into mice, and show that outer root sheath cells undergo transforming growth factor-β2-induced apoptosis, resulting in keratin exposure. Keratin exposure appears to be critical for dermal papilla cell condensation and hair germ formation as immunodepletion and silencing keratin prevent dermal papilla cell condensation and hair germ formation. Furthermore, silencing keratin in mice resulted in a marked suppression of anagen follicle formation and hair growth. Our study imply a new finding of how to initiate hair regeneration and suggests the potent application of keratin biomaterial for the treatment of hair loss.

1994 ◽  
Vol 107 (7) ◽  
pp. 1761-1772
Author(s):  
W. Filsell ◽  
J.C. Little ◽  
A.J. Stones ◽  
S.P. Granger ◽  
S.A. Bayley

The dermal papilla is a discrete group of cells at the base of the hair follicle and is implicated in controlling the hair growth cycle. Early passage dermal papilla cells can induce hair growth in vivo, but, upon further culturing, this property is lost. In order to study the events occurring in hair induction, a representative dermal papilla cell line was required. We have transfected passage 1 rat vibrissa dermal papilla cells with a polyomavirus large T gene encoding a temperature-sensitive T antigen, and generated permanent cell lines in which the immortalizing function can be switched off by temperature shift. The cells established without crisis, resembled cells in the starting population, and retained the aggregative properties of early passage dermal papilla cells. Growth studies were performed on the immortalized cell lines, which showed that transferring the cells to the restrictive temperature for the large T gene product resulted in cell senescence or quiescence, and changes in morphology. Implantation of cell pellets into the ears of immunologically compatible rats showed that the immortal cells retained hair-inductive ability. Cytokines are believed to have an important role in the control of hair growth. The pattern of cytokine gene expression in the immortal cell lines was compared with early passage dermal papilla cells and a non-hair-inducing dermal papilla cell line, using reverse transcriptase-polymerase chain reaction. Epidermal growth factor, tumour necrosis factor, and interleukin-1a were detected in the immortalized and non-hair-inducing dermal papilla cell lines, but were absent in passage 2 dermal papilla cells. All other cytokines examined were detected in all the cell types under study. These results demonstrate that the polyomavirus large Ttsa-immortalized dermal papilla cell lines are very similar to passage 2 dermal papilla cells and thus provide a good model for hair growth studies. Cytokine expression profiles indicate that the expression of several cytokines may be implicated in hair induction. Further studies are under way to investigate the relationship between cytokine expression and the hair growth cycle.


2020 ◽  
Vol 21 (16) ◽  
pp. 5672
Author(s):  
Kyung-Eun Ku ◽  
Nahyun Choi ◽  
Jong-Hyuk Sung

Rab27a/b are known to play an important role in the transport of melanosomes, with their knockout causing silvery gray hair. However, the relationship between Rab27a/b and hair growth is not well known. To evaluate the role of Rab27a/b in hair cycle, we investigated the expression of Rab27a/b during hair cycling and human outer root sheath (hORS) cells. The expression of Rab27a in ORS cells was mainly detected at the anagen, whereas expression of Rab27b in ORS, and epidermal cells was strongly expressed at the telogen. Additionally, Rab27a/b were expressed in the Golgi of hORS cells. To evaluate the role of Rab27a/b in hair growth, telogen-to-anagen transition animal and vibrissae hair follicles (HFs) organ culture models were assayed using Rab27a/b siRNAs. The knockdown of Rab27a or Rab27b suppressed or promoted hair growth, respectively. These results were also confirmed in human dermal papilla cells (hDPCs) and hORS cells, showing the opposite mitogenic effects. Moreover, Rab27b knockdown increased the expression levels of various growth factors in the hDPCs and hORS cells. Overall, the opposite temporal expression patterns during hair cycling and roles for hair growth of Rab27a/b suggested that Rab27a/b might regulate the hair cycle. Therefore, our study may provide a novel solution for the development of hair loss treatment by regulating Rab27a/b levels.


2001 ◽  
Vol 25 (3) ◽  
pp. 206-212 ◽  
Author(s):  
Takeshi Fujie ◽  
Shoji Katoh ◽  
Hajimu Oura ◽  
Yoshio Urano ◽  
Seiji Arase

Author(s):  
Yuxin Chen ◽  
Junfei Huang ◽  
Zhen Liu ◽  
Ruosi Chen ◽  
Danlan Fu ◽  
...  

The application of dermal papilla cells to hair follicle (HF) regeneration has attracted a great deal of attention. However, cultured dermal papilla cells (DPCs) tend to lose their capacity to induce hair growth during passage, restricting their usefulness. Accumulating evidence indicates that DPCs regulate HF growth mainly through their unique paracrine properties, raising the possibility of therapies based on extracellular vesicles (EVs). In this study, we explored the effects of EVs from high- and low-passage human scalp follicle dermal papilla cells (DP-EVs) on activation of hair growth, and investigated the underlying mechanism. DP-EVs were isolated by ultracentrifugation and cultured with human scalp follicles, hair matrix cells (MxCs), and outer root sheath cells (ORSCs), and we found low-passage DP-EVs accelerated HF elongation and cell proliferation activation. High-throughput miRNA sequencing and bioinformatics analysis identified 100 miRNAs that were differentially expressed between low- (P3) and high- (P8) passage DP-EVs. GO and KEGG pathway analysis of 1803 overlapping target genes revealed significant enrichment in the BMP/TGF-β signaling pathways. BMP2 was identified as a hub of the overlapping genes. miR-140-5p, which was highly enriched in low-passage DP-EVs, was identified as a potential regulator of BMP2. Direct repression of BMP2 by miR-140-5p was confirmed by dual-luciferase reporter assay. Moreover, overexpression and inhibition of miR-140-5p in DP-EVs suppressed and increased expression of BMP signaling components, respectively, indicating that this miRNA plays a critical role in hair growth and cell proliferation. DP-EVs transport miR-140-5p from DPCs to epithelial cells, where it downregulates BMP2. Therefore, DPC-derived vesicular miR-140-5p represents a therapeutic target for alopecia.


2002 ◽  
Vol 290 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Yutaka Ota ◽  
Yuko Saitoh ◽  
Satoshi Suzuki ◽  
Kazuo Ozawa ◽  
Mitsuko Kawano ◽  
...  

Cosmetics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Kristelle Hughes ◽  
Raimana Ho ◽  
Claire Chazaud ◽  
Stéphanie Hermitte ◽  
Stéphane Greff ◽  
...  

Fagraea berteroana is a tree used in traditional medicine in various islands of the South Pacific. Here, we studied its hair growth-inducing properties as suggested by one of its Marquesan ethno-uses in haircare. The ethyl acetate extract of the fruits of F. berteroana (FEAE) and four resulting fractions (FEAE-F0, FEAE-F1, FEAE-F2, and FEAE-F3) were tested on hair follicle dermal papilla cells to determine their cell proliferative activity. Furthermore, RT-qPCR analysis enabled gene modulation analysis, while immunostaining of the β-catenin protein was used to follow protein regulation. We found that the plant extracts induced a controlled, dose-dependent cell proliferation. FEAE-F0 simultaneously down-regulated Bone Morphogenetic Protein 2 (BMP2) mRNA expression and upregulated Cyclin-D1 (CCND1) gene expression, which suggests an involvement in the regulation of the Wnt and Transforming Growth Factor beta (TGFβ) pathways that control the hair cycle. FEAE-F0 exhibited a 1.34-fold increase of nuclear β-catenin protein. This is indicative of an active hair growth state. Thus, we conclude that FEAE-F0 could be an innovative candidate in hair care, which opens interesting leads to promote the Marquesan cosmetopoeia.


1998 ◽  
Vol 46 (4) ◽  
pp. 437-447 ◽  
Author(s):  
Kristiina Airola ◽  
Matti Ahonen ◽  
Nina Johansson ◽  
Päivi Heikkilä ◽  
Juha Kere ◽  
...  

We studied the expression and regulation of TIMP-3, a recently cloned member of the tissue inhibitor of the metalloproteinase family, during human fetal development and in various human tissues, with emphasis on epithelial structures. Expression of TIMP-3 mRNA was detected by in situ hybridization in developing bone, kidney, and various mesenchymal structures. At 16 weeks of gestation, ectoderm-derived cells of hair germs expressed TIMP-3 mRNA, and beginning from the twentieth week consistent expression was detected in epithelial outer root sheath cells of growing hair follicles. In normal adult human skin, expression of TIMP-3 mRNA was limited to hair follicles, starting at the early anagen (growing) phase and vanishing at the catagen (regressing) phase. TIMP-3 mRNA was not detected in benign hair follicle-derived tumors but was present in tumor cells of infiltrative basal cell carcinomas and in surrounding stromal cells in squamous cell carcinomas. Human primary keratinocytes in culture expressed TIMP-3 mRNAs, the levels of which were upregulated by transforming growth factor-β (TGF-β), whereas interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) had no effect. Our results suggest a role for TIMP-3 in connective tissue remodeling during fetal development, hair growth cycle, and cancer progression.


Sign in / Sign up

Export Citation Format

Share Document