scholarly journals Transient dendritic cell activation diversifies the T cell response to acute infection

Author(s):  
Matthew Spitzer ◽  
Kamir Hiam-Galvez ◽  
Rachel DeBarge ◽  
Caleb Lareau ◽  
Nam Woo Cho ◽  
...  

Abstract The precise timing of T cell priming during infection remains unclear. Here, we mapped the cellular dynamics of all immune lineages during acute infection with Listeria monocytogenes (Lm). We identified highly transient activation of conventional type 1 dendritic cells (cDC1s) two days post-infection that functions as a critical time window for priming effector CD8 T cells. Regulation of this transient state was mediated by cDC1-extrinsic IFNγ provided by lymphocytes. Furthermore, antigen-specific T cells that are primed by cDC1s even shortly after this window of peak activation acquire only memory T cell fates. This temporal regulation of fate is recapitulated by cDC1s ex vivo, demonstrating that shifts in activation state of a single antigen presenting cell subset over time regulates CD8 T cell fates. These results uncover a novel mechanism for temporal regulation of CD8 T cell differentiation during a dynamic immune response to acute infection.

2021 ◽  
Author(s):  
Kamir J Hiam-Galvez ◽  
Rachel Debarge ◽  
Caleb A Lareau ◽  
Nam Woo Cho ◽  
Jacqueline L Yee ◽  
...  

The precise timing of T cell priming during infection remains unclear. Here, we mapped the cellular dynamics of all immune lineages during acute infection with Listeria monocytogenes (Lm). We identified highly transient DC activation 2 days post-infection that functions as a critical time window for priming effector T cells. Regulation of this transient state was mediated by DC extrinsic IFNγ provided by lymphocytes. Furthermore, antigen-specific T cells that arrive late to the site of priming and miss peak DC activation acquire only memory T cell fates. This temporal regulation of fate is recapitulated by CD8+ DCs ex vivo, suggesting that shifts in activation state of a single antigen presenting cell population alter T cell fates. These results uncover a novel mechanism for temporal regulation of T cell differentiation during a dynamic immune response to acute infection.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


2016 ◽  
Vol 34 (4) ◽  
pp. 396-409 ◽  
Author(s):  
Katja Nitschke ◽  
Hendrik Luxenburger ◽  
Muthamia M. Kiraithe ◽  
Robert Thimme ◽  
Christoph Neumann-Haefelin

Approximately 500 million people are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV) worldwide and are thus at high risk of progressive liver disease, leading to liver fibrosis, cirrhosis and ultimately hepatocellular cancer. Virus-specific CD8+ T-cells play a major role in viral clearance in >90% of adult patients who clear HBV and in approximately 30% of patients who clear HCV in acute infection. However, several mechanisms contribute to the failure of the adaptive CD8+ T-cell response in those patients who progress to chronic infection. These include viral mutations leading to escape from the CD8+ T-cell response as well as exhaustion and dysfunction of virus-specific CD8+ T-cells. Antiviral efficacy of the virus-specific CD8+ T-cell response also strongly depends on its restriction by specific human leukocyte antigens (HLA) class I alleles. Our review will summarize the role of HLA-A, B and C-restricted CD8+ T-cells in HBV and HCV infection. Due to the current lack of a comprehensive database of HBV- and HCV-specific CD8+ T-cell epitopes, we also provide a summary of the repertoire of currently well-described HBV- and HCV-specific CD8+ T-cell epitopes. A better understanding of the factors that contribute to the success or failure of virus-specific CD8+ T-cells may help to develop new therapeutic options for HBV eradication in patients with chronic HBV infection (therapeutic vaccination and/or immunomodulation) as well as a prophylactic vaccine against HCV infection.


2008 ◽  
Vol 205 (3) ◽  
pp. 669-684 ◽  
Author(s):  
Andrew G. Evans ◽  
Janice M. Moser ◽  
Laurie T. Krug ◽  
Veranika Pozharskaya ◽  
Ana L. Mora ◽  
...  

Little is known about herpesvirus modulation of T cell activation in latently infected individuals or the implications of such for chronic immune disorders. Murine gammaherpesvirus 68 (MHV68) elicits persistent activation of CD8+ T cells bearing a Vβ4+ T cell receptor (TCR) by a completely unknown mechanism. We show that a novel MHV68 protein encoded by the M1 gene is responsible for Vβ4+ CD8+ T cell stimulation in a manner reminiscent of a viral superantigen. During infection, M1 expression induces a Vβ4+ effector T cell response that resists functional exhaustion and appears to suppress virus reactivation from peritoneal cells by means of long-term interferon-γ (IFNγ) production. Mice lacking an IFNγ receptor (IFNγR−/−) fail to control MHV68 replication, and Vβ4+ and CD8+ T cell activation by M1 instead contributes to severe inflammation and multiorgan fibrotic disease. Thus, M1 manipulates the host CD8+ T cell response in a manner that facilitates latent infection in an immunocompetent setting, but promotes disease during a dysregulated immune response. Identification of a viral pathogenecity determinant with superantigen-like activity for CD8+ T cells broadens the known repertoire of viral immunomodulatory molecules, and its function illustrates the delicate balance achieved between persistent viruses and the host immune response.


2020 ◽  
Author(s):  
Jaana Westmeier ◽  
Krystallenia Paniskaki ◽  
Zehra Karaköse ◽  
Tanja Werner ◽  
Kathrin Sutter ◽  
...  

AbstractSARS-CoV-2 infection induces a T cell response that most likely contributes to virus control in COVID-19 patients, but may also induce immunopathology. Until now, the cytotoxic T cell response has not been very well characterized in COVID-19 patients.Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of granzyme A and B, as well as perforin within different effector CD8+ T cell subsets. PD-1 expressing CD8+ T cells also produced cytotoxic molecules during acute infection indicating that they were not functionally exhausted. However, in COVID-19 patients over the age of 80 years the cytotoxic T cell potential was diminished, especially in effector memory and terminally differentiated effector CD8+ cells, showing that elderly patients have impaired cellular immunity against SARS-CoV-2.Our data provides valuable information about T cell responses in COVID-19 patients that may also have important implications for vaccine development.ImportanceCytotoxic T cells are responsible for the elimination of infected cells and are key players for the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules and are able to perform target cell killing. COVID-19 patients with a mild disease course were analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the absence of a cytotoxic response in elderly patients might be a possible reason for the more frequent severity of COVID-19 in this age group in comparison to younger patients.


2021 ◽  
Author(s):  
◽  
Taryn Louise Osmond

<p>Splenic CD8α⁺ dendritic cells (DCs) have been described as key antigen presenting cells for the induction of CD8⁺ T cell responses to circulating antigen. This is through a heightened capacity to acquire and present the antigens via the process of cross-presentation, expression of high levels of the co-stimulatory and adhesion molecules required to stimulate CD8⁺ T cells, and the capacity to release high levels of the cytokines required to drive differentiation of CD8⁺ T cells into cytotoxic T lymphocytes (CTLs). However, recent research has indicated that the splenic CD8α⁺ DC population is more heterogeneous than originally thought. A previous study from my own laboratory suggested that a population of CD8α⁺ DCs that express the c-type lectin langerin primarily possess the heightened functions previously attributed to the total CD8α⁺ population. Therefore, the aim of this thesis research was to explore this subset of DCs in more detail, with specific emphasis on gaining mechanistic insight into their ability to elicit CD8⁺ T cell responses to circulating proteins. In the first section of this thesis, the hypothesis that the splenic langerin⁺ CD8α⁺ DCs were the critical subset involved in the induction of strong systemic CD8⁺ T cell responses to circulating antigen was tested in detail. This was examined using a genetically modified mouse model in which langerin-expressing cells could be easily identified and/or specifically depleted. It was first shown that the induction of CD8⁺ T cell responses to the model antigen ovalbumin was dependent on entry into the spleen in the presence of appropriate stimulation, which in these studies was provided by agonists for the toll-like receptors (TLRs) and/or signals from innate-like lymphocytes called natural killer T (NKT) cells. The primary targets for these signals were shown to be splenic langerin⁺ CD8α⁺ DCs, as CD8⁺ T cell responses were significantly reduced in hosts depleted of these cells within the spleen. Furthermore, agonists for TLRs that were not expressed by langerin⁺ CD8α⁺ DCs failed to enhance T cell responses. The langerin⁺ CD8α⁺ DCs were shown to be located in the marginal zone of the spleen, where they could readily screen the blood for antigens, and their function was critical to the induction of CD8⁺ T cell responses within six hours of antigen delivery. Interestingly, other local langerin-negative antigen presenting cells (APCs) were shown to be capable of cross-presentation, but with significantly reduced capacity to prime CD8⁺ T cell responses. Therefore, in the second section of this thesis the hypothesis that the langerin-negative APCs were capable of contributing to CD8⁺ T cell responses with appropriately timed stimuli was investigated. One of the downstream effects of inducing NKT cell activation at the time of priming was shown to be the “pre-conditioning” of langerin-negative DCs, allowing them to respond strongly to subsequent TLR ligation. Using SiglecH-DTR mice, it was shown that plasmacytoid DCs (which are langerin-negative) were pre-conditioned by NKT cell activation, allowing them to respond more actively to the delayed TLR stimulation by producing significantly enhanced levels of IFN-α. This factor was also potentially responsible for “feeding back” to the CD8α⁺ DCs (including langerin-expressing CD8α⁺ DCs), to enhance their function, as indicated by increases in cytokine production. Significantly, the major langerin-negative DC populations, defined as CD8α⁻ DCs, were pre-conditioned to have an enhanced cytokine release response to subsequent stimulation through TLR7, a receptor not expressed by langerin-positive DCs. This enhanced ability to respond to TLR7 ligation permitted these langerin-negative APCs to contribute to increased CD8⁺ T cell accumulation, with enhanced functional activity. Importantly, the CD8⁺ T cell response induced remained significantly dependent on initial cross-priming by langerin⁺ CD8α⁺ DCs, and it was only through pre-conditioning that langerinnegative APCs could contribute to enhancing the T cell response. In the third section of this thesis, the hypothesis that the CD8⁺ T cell responses generated in the presence of langerin⁺ CD8α⁺ DCs were phenotypically and functionally distinct from those responses generated in their absence was tested. No obvious differences were seen in CD8⁺ T cell homing, memory phenotype, restimulatory capacity, and expression of key molecules involved in metabolic function, survival and cytolytic function. However, in vivo cytotoxic function several weeks after priming was comparable, suggesting that this function was not related to initial burst size, providing some evidence of difference in function between CD8⁺ T cells primed in the presence or absence of langerin⁺ CD8α⁺ DCs. In summary, the splenic langerin⁺ CD8α⁺ DCs are the major subset responsible for cross-priming CD8⁺ T cell responses to circulating antigen, and for interpreting multiple stimulatory signals for enhancing the response. However, effective CD8⁺ T cell responses can be generated in their absence, particularly when antigens are provided in the context of appropriately temporally phased stimuli.</p>


2019 ◽  
Vol 116 (28) ◽  
pp. 14113-14118 ◽  
Author(s):  
Rohit R. Jadhav ◽  
Se Jin Im ◽  
Bin Hu ◽  
Masao Hashimoto ◽  
Peng Li ◽  
...  

We have recently defined a novel population of PD-1 (programmed cell death 1)+ TCF1 (T cell factor 1)+ virus-specific CD8 T cells that function as resource cells during chronic LCMV infection and provide the proliferative burst seen after PD-1 blockade. Such CD8 T cells have been found in other chronic infections and also in cancer in mice and humans. These CD8 T cells exhibit stem-like properties undergoing self-renewal and also differentiating into the terminally exhausted CD8 T cells. Here we compared the epigenetic signature of stem-like CD8 T cells with exhausted CD8 T cells. ATAC-seq analysis showed that stem-like CD8 T cells had a unique signature implicating activity of HMG (TCF) and RHD (NF-κB) transcription factor family members in contrast to higher accessibility to ETS and RUNX motifs in exhausted CD8 T cells. In addition, regulatory regions of the transcription factorsTcf7andId3were more accessible in stem-like cells whereasPrdm1andId2were more accessible in exhausted CD8 T cells. We also compared the epigenetic signatures of the 2 CD8 T cell subsets from chronically infected mice with effector and memory CD8 T cells generated after an acute LCMV infection. Both CD8 T cell subsets generated during chronic infection were strikingly different from CD8 T cell subsets from acute infection. Interestingly, the stem-like CD8 T cell subset from chronic infection, despite sharing key functional properties with memory CD8 T cells, had a very distinct epigenetic program. These results show that the chronic stem-like CD8 T cell program represents a specific adaptation of the T cell response to persistent antigenic stimulation.


Blood ◽  
2010 ◽  
Vol 115 (8) ◽  
pp. 1554-1563 ◽  
Author(s):  
Stefania Parlato ◽  
Giulia Romagnoli ◽  
Francesca Spadaro ◽  
Irene Canini ◽  
Paolo Sirabella ◽  
...  

Abstract The identification of molecules responsible for apoptotic cell (AC) uptake by dendritic cells (DCs) and induction of T-cell immunity against AC-associated antigens is a challenge in immunology. DCs differentiated in the presence of interferon-α (IFN-α–conditioned DCs) exhibit a marked phagocytic activity and a special attitude in inducing CD8+ T-cell response. In this study, we found marked overexpression of the scavenger receptor oxidized low-density lipoprotein receptor 1 (LOX-1) in IFN-α–conditioned DCs, which was associated with increased levels of genes belonging to immune response families and high competence in inducing T-cell immunity against antigens derived from allogeneic apoptotic lymphocytes. In particular, the capture of ACs by IFN-α DCs led to a substantial subcellular rearrangement of major histocompatibility complex class I and class II molecules, along with enhanced cross-priming of autologous CD8+ T cells and CD4+ T-cell activation. Remarkably, AC uptake, CD8+ T-cell cross-priming, and, to a lesser extent, priming of CD4+ T lymphocytes were inhibited by a neutralizing antibody to the scavenger receptor LOX-1 protein. These results unravel a novel LOX-1–dependent pathway by which IFN-α can, under both physiologic and pathologic conditions, render DCs fully competent for presenting AC-associated antigens for cross-priming CD8+ effector T cells, concomitantly with CD4+ T helper cell activation.


2019 ◽  
Vol 116 (40) ◽  
pp. 20077-20086 ◽  
Author(s):  
Chloé C. Nobis ◽  
Geneviève Dubeau Laramée ◽  
Laura Kervezee ◽  
Dave Maurice De Sousa ◽  
Nathalie Labrecque ◽  
...  

Circadian variations of various aspects of the immune system have been described. However, the circadian control of T cells has been relatively unexplored. Here, we investigated the role of circadian clocks in regulating CD8 T cell response to antigen presentation by dendritic cells (DCs). The in vivo CD8 T cell response following vaccination with DCs loaded with the OVA257–264 peptide antigen (DC-OVA) leads to a higher expansion of OVA-specific T cells in response to vaccination done in the middle of the day, compared to other time points. This rhythm was dampened when DCs deficient for the essential clock gene Bmal1 were used and abolished in mice with a CD8 T cell-specific Bmal1 deletion. Thus, we assessed the circadian transcriptome of CD8 T cells and found an enrichment in the daytime of genes and pathways involved in T cell activation. Based on this, we investigated early T cell activation events. Three days postvaccination, we found higher T cell activation markers and related signaling pathways (including IRF4, mTOR, and AKT) after a vaccination done during the middle of the day compared to the middle of the night. Finally, the functional impact of the stronger daytime response was shown by a more efficient response to a bacterial challenge at this time of day. Altogether, these results suggest that the clock of CD8 T cells modulates the response to vaccination by shaping the transcriptional program of these cells and making them more prone to strong and efficient activation and proliferation according to the time of day.


2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Rong En Tay ◽  
Olamide Olawoyin ◽  
Paloma Cejas ◽  
Yingtian Xie ◽  
Clifford A. Meyer ◽  
...  

Cytotoxic T cells play a key role in adaptive immunity by killing infected or cancerous cells. While the transcriptional control of CD8 T cell differentiation and effector function following T cell activation has been extensively studied, little is known about epigenetic regulation of these processes. Here we show that the histone deacetylase HDAC3 inhibits CD8 T cell cytotoxicity early during activation and is required for persistence of activated CD8 T cells following resolution of an acute infection. Mechanistically, HDAC3 inhibits gene programs associated with cytotoxicity and effector differentiation of CD8 T cells including genes encoding essential cytotoxicity proteins and key transcription factors. These data identify HDAC3 as an epigenetic regulator of the CD8 T cell cytotoxicity program.


Sign in / Sign up

Export Citation Format

Share Document