scholarly journals Bias Correction, Historical Evaluations and Future Projections of Climate Simulations in the Wei River Basin Using CORDEX-EA

Author(s):  
Yinping Wang ◽  
Rengui Jiang ◽  
Jiancang Xie ◽  
Jiwei Zhu ◽  
Yong Zhao ◽  
...  

Abstract The utilization of Regional Climate Methods (RCMs) to predict future regional climate is an important study under the changing environment. The primary objective of the paper is to correct the temperature and precipitation simulations for the period of 1980-2005 and 2026-2098 in the Wei River Basin (WRB), to evaluate the performance of RCMs for the period of 1980-2005, and further, to analyze the future changes of projected temperature and precipitation during 2026-2098. In this paper, the linear scaling method was used to correct the temperature simulations. Quantile mapping, local intensity scaling method and hybrid method were used to correct the precipitation simulations. The future changes of projected temperature and precipitation for the near-term (2026-2050), mid-term (2051-2075) and far-term (2076-2098), relative to the period of 1980-2005, were investigated under RCP 2.6 and RCP 8.5. Results indicate that: (1) The temperature biases were different spatial distributions, and the precipitation wet biases were detected in the WRB. After correction, HadGEM2-ES driven by RegCM4-4 had the best temperature reproducibility, and NCC-NorESM1-M driven by RegCM4-4 had the best precipitation reproducibility. (2) Under RCP 2.6, the projected annual, winter and spring temperature showed decreasing trends. The temperature was higher than that for the period of 1980-2005 except for the spring temperature decreases in the Beiluo River Basin. Under RCP 8.5, the temperature showed significantly increasing trends. The temperature for the near-term was similar to the period of 1980-2005, while the temperature increased significantly for the mid-term and far-term. (3) Under RCP 2.6, the precipitation had decreasing trends. Under RCP 8.5, precipitation trends were also spatially distributed. The relative deviation of winter precipitation was the largest. Relative to the period of 1980-2005, the light and moderate rain days showed little change for the period of 2026-2098, while the extreme rain days showed significantly increasing trends. (4) The results could be beneficial to the future climate projection, which provide references for the water resources management, the future hydrological process changes and attribution analysis in the WRB.

2014 ◽  
Vol 955-959 ◽  
pp. 3887-3892 ◽  
Author(s):  
Huang He Gu ◽  
Zhong Bo Yu ◽  
Ji Gan Wang

This study projects the future extreme climate changes over Huang-Huai-Hai (3H) region in China using a regional climate model (RegCM4). The RegCM4 performs well in “current” climate (1970-1999) simulations by compared with the available surface station data, focusing on near-surface air temperature and precipitation. Future climate changes are evaluated based on experiments driven by European-Hamburg general climate model (ECHAM5) in A1B future scenario (2070-2099). The results show that the annual temperature increase about 3.4 °C-4.2 °C and the annual precipitation increase about 5-15% in most of 3H region at the end of 21st century. The model predicts a generally less frost days, longer growing season, more hot days, no obvious change in heat wave duration index, larger maximum five-day rainfall, more heavy rain days, and larger daily rainfall intensity. The results indicate a higher risk of floods in the future warmer climate. In addition, the consecutive dry days in Huai River Basin will increase, indicating more serve drought and floods conditions in this region.


2019 ◽  
Vol 653 ◽  
pp. 1077-1094 ◽  
Author(s):  
Lingtong Gai ◽  
João P. Nunes ◽  
Jantiene E.M. Baartman ◽  
Hongming Zhang ◽  
Fei Wang ◽  
...  

2013 ◽  
Vol 14 (4) ◽  
pp. 407-421 ◽  

The potential regional future changes in seasonal (winter and summer) temperature and precipitation are assessed for the greater area of Greece over the 21st century, under A2, A1B and B2 future emission scenarios of IPCC. Totally twenty-two simulations from various regional climate models (RCMs) were assessed; fourteen of them with a spatial grid resolution of 50km for the period 2071-2100 under A2 (9 simulations) and B2 (5 simulations) scenarios and eight of them with an even finer resolution of 25km under A1B scenario for both 2021-2050 and 2071-2100 time periods. The future changes in temperature and precipitation were calculated with respect to the control period (1961-1990). All the models estimated warmer and dryer conditions over the study area. The warming is more intense during the summer months, with the changes being larger in the continental than in the marine area of Greece. In terms of precipitation, the simulations of the RCMs estimate a decrease up to -60% (A2 scenario). Finally it is shown that the changes in the atmospheric circulation over Europe play a key role in the changes of the future precipitation and temperature characteristics over the domain of study in a consistent way for the different emission scenarios.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3532
Author(s):  
Qianyang Wang ◽  
Yuan Liu ◽  
Qimeng Yue ◽  
Yuexin Zheng ◽  
Xiaolei Yao ◽  
...  

A gated recurrent unit (GRU) network, which is a kind of artificial neural network (ANN), has been increasingly applied to runoff forecasting. However, knowledge about the impact of different input data filtering strategies and the implications of different architectures on the GRU runoff forecasting model’s performance is still insufficient. This study has selected the daily rainfall and runoff data from 2007 to 2014 in the Wei River basin in Shaanxi, China, and assessed six different scenarios to explore the patterns of that impact. In the scenarios, four manually-selected rainfall or runoff data combinations and principal component analysis (PCA) denoised input have been considered along with single directional and bi-directional GRU network architectures. The performance has been evaluated from the aspect of robustness to 48 various hypermeter combinations, also, optimized accuracy in one-day-ahead (T + 1) and two-day-ahead (T + 2) forecasting for the overall forecasting process and the flood peak forecasts. The results suggest that the rainfall data can enhance the robustness of the model, especially in T + 2 forecasting. Additionally, it slightly introduces noise and affects the optimized prediction accuracy in T + 1 forecasting, but significantly improves the accuracy in T + 2 forecasting. Though with relevance (R = 0.409~0.763, Grey correlation grade >0.99), the runoff data at the adjacent tributary has an adverse effect on the robustness, but can enhance the accuracy of the flood peak forecasts with a short lead time. The models with PCA denoised input has an equivalent, even better performance on the robustness and accuracy compared with the models with the well manually filtered data; though slightly reduces the time-step robustness, the bi-directional architecture can enhance the prediction accuracy. All the scenarios provide acceptable forecasting results (NSE of 0.927~0.951 for T + 1 forecasting and 0.745~0.836 for T + 2 forecasting) when the hyperparameters have already been optimized. Based on the results, recommendations have been provided for the construction of the GRU runoff forecasting model.


2014 ◽  
Vol 28 (13) ◽  
pp. 4599-4613 ◽  
Author(s):  
Shengzhi Huang ◽  
Jianxia Chang ◽  
Qiang Huang ◽  
Yimin Wang ◽  
Yutong Chen

2014 ◽  
Vol 120 (1-2) ◽  
pp. 391-401 ◽  
Author(s):  
Shengzhi Huang ◽  
Beibei Hou ◽  
Jianxia Chang ◽  
Qiang Huang ◽  
Yutong Chen

Author(s):  
Lamboni Batablinlè ◽  
Lawin E. Agnidé ◽  
Kodja Domiho Japhet ◽  
Amoussou Ernest ◽  
Vissin Expédit

Abstract. The impact of climate change on precipitation and water availability is of major concern for policy makers in the Mono Basin of West Africa, whose economy mainly depends on rainfed agriculture and hydropower generation. The objective of this study is to project rainfall, flows and evapotranspiration (ET) in the future period and understand their changes across Mono River Basin. Observed data were considered for the historical period 1980–2010, and a Multi-model ensemble for future projections data of eight selected Regional Climate Models under RCP 4.5 and RCP 8.5 over the periods 2011–2100 was used. The GR4J model was used to simulate daily flows of the Mono watershed. The ensemble mean shows a decrease and increase streamflows between −54 % and 42 %, −58 % and 31 %​​​​​​​ under the RCP4.5, RCP8.5 scenario, respectively. The greatest decreases of high flows is projected to occur in the near term under RCP8.5, whereas the greatest decrease of low flows is projected to occur in the long term under the same RCP. For the rainfall and ET, the both scenarios (RCP4.5 and RCP8.5) predict an increase of ET while the rainfall will decrease. The results of this study of would be very useful in the choice of management and adaptation policies for water resources management.


2016 ◽  
Author(s):  
Hong Wang ◽  
Fubao Sun

Abstract. Under the Grain for Green project in China, vegetation recovery constructions have been widely implemented on the Loess Plateau for the purpose of soil and water conservation. Now it becomes controversial whether the recovery constructions of vegetation, particularly forest, is reducing streamflow in rivers of the Yellow River Basin. In this study, we choose the Wei River, the largest branch of the Yellow River and implemented with revegetation constructions, as the study area. To do that, we apply the widely used Soil and Water Assessment Tool (SWAT) model for the upper and middle reaches of the – Wei River basin. The SWAT model was forced with daily observed meteorological forcings (1960–2009), calibrated against daily streamflow for 1960–1969, validated for the period of 1970–1979 and used for analysis for 1980–2009. To investigate the impact of the LUCC (Land Use and land Cover Change) on the streamflow, we firstly use two observed land use maps of 1980 and 2005 that are based on national land survey statistics emerged with satellite observations. We found that the mean streamflow generated by using the 2005 land use map decreased in comparison with that using the 1980 one, with the same meteorological forcings. Of particular interest here, we found the streamflow decreased in agricultural land but increased in forest area. More specifically, the surface runoff, soil flow and baseflow all decreased in agricultural land, while the soil flow and baseflow of forest were increased. To investigate that, we then designed five scenarios including (S1) the present land use (1980), (S2) 10 %, (S3) 20 %, (S4) 40 % and (S5) 100 % of agricultural land was converted into forest. We found that the streamflow consistently increased with agricultural land converted into forest by about 7.4 mm per 10 %. Our modeling results suggest that forest recovery constructions have positive impact on both soil flow and base flow compensating reduced surface runoff, which leads to a slight increase in streamflow in the Wei River with mixed landscapes of Loess Plateau and earth-rock mountain.


Sign in / Sign up

Export Citation Format

Share Document