scholarly journals Identification on the potential mechanism of Radix pueraria on colon cancer based on network pharmacology

Author(s):  
Yi Li ◽  
Chunli Zhang ◽  
Xiaohan Ma ◽  
Liuqing Yang ◽  
Huijun Ren

Abstract Radix Puerariae (RP), a dry root of the Pueraria lobata (Willd.) Ohwi, is used to treat a variety of diseases, including cancer. Several in vitro and in vivo studies have demonstrated the efficacy of RP in the treatment of colon cancer (CC). However, the biological mechanism of RP in the treatment of colon cancer remains unclear. In this study, the active component of RP and its potential molecular mechanism against CC were studied by network pharmacology and enrichment analysis. The methods adopted included screening of active ingredients of Chinese medicine, prediction of target genes of Chinese medicine and disease, construction of protein interaction network, and GO and KEGG Enrichment Analysis. Finally, the results of network pharmacology were further validated by molecular docking experiments and cell experiments. 8 active constituents and 14 potential protein targets were screened from RP, including EGFR, JAK2 and SRC. The biological mechanism of RP against CC was analyzed by studying the relationship between active components, targets, and enrichment pathway. This provides a basis for understanding the clinical application of RP in CC.

2020 ◽  
Author(s):  
Shan Liu ◽  
Chi Zhang ◽  
Zexin Zhang ◽  
Wei Guo ◽  
Jiangnan Xia ◽  
...  

Abstract Background: Acupoint application (AA) therapy, a traditional Chinese medicine external treatment method, is recommended as a complementary Chinese medicine therapy for treating new coronavirus pneumonia (COVID-19), and can help improve curative effects, promote patient recovery, and improve immunity to prevent disease, but the mechanism is not clear. We sought to explore the key targets and mechanisms of Ephedra and Asarum, the main components used in AA, in the treatment of COVID-19 in this study.Methods: The active compounds and related targets of Ephedra and Asarum used in AA were screened by searching four databases. COVID-19-related target genes were identified from three disease databases, and the key targets of treating COVID-19 were obtained by Venn diagram using Cytoscape 3.2.1 software, gene ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to explore possible mechanisms and pathways. The verification of the binding force between the compounds and target genes was completed by performing molecular docking with Autodock and pymol software.Results: Twenty-four active components of AA corresponded to 252 targets, with 713 target genes related to COVID-19, and 56 key genes were selected. GO analysis results showed that biological processes mainly included the inflammatory and immune responses, and cell components were mainly the plasma membrane and nucleus, with molecular functions including protein binding and identical protein binding. The top pathways included Immune System, Cytokine Signaling in Immune System, Adaptive Immune System, Signaling by Interleukins, Innate Immune System, and Signaling by GPCR.Conclusion: The results of this study preliminarily verified that Ephedra and Asarum used in AA therapy could treat COVID-19 via multiple compounds and multi-pathways, which provided a basis for clinical application and further research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Yu ◽  
Hongju Cheng ◽  
Baoliang Zhu ◽  
Jing Yan

Ulcerative colitis (UC) is the major type of inflammatory bowel disease (IBD) characterized by an overactive immune responses and destruction of the colorectal epithelium with intricate pathological factors. In China, Huiyangjiuji decoction (HYJJ) has been widely administered against inflammation, but the underlying mechanical mechanisms are not known. A murine model of colitis was established by orally feeding 4% dextran sodium sulfate for 5 days. Intestinal organoids (IOs) were treated with TNFα (Tumor necrosis factor-α) as an ex-vivo UC model. A scratch assay combined with a co-culture system that incubated murine epithelial cell line (IEC-6) with macrophages (Mφs) was utilized to assess epithelial recovery under inflammatory conditions. Network pharmacology analysis was performed to elucidate the mechanism of HYJJ decoction. In the present study, we confirmed that HYJJ considerably alleviated of DSS-induced colitis, as evidenced by the improved intestinal injury and fecal albumin, as well as feces blood. Network pharmacology analysis identified the active components in HYJJ formula, and KEGG enrichment analysis indicated that HYJJ-target genes were enriched in pathogen-induced infections, cancer-related as well as inflammatory pathways. Consistently, RNA-sequencing demonstrated that HYJJ treated inhibited cytokine-cytokine interaction, IBD as well as TNF signaling pathways, confirming the anti-inflammatory and anti-neoplastic role of HYJJ decoction. In-vitro experimental evidence confirmed the suppression of pro-interleukins by HYJJ, including IL-2, IL-10 and IL-12. Moreover, the contribution of HYJJ to mucosal healing was corroborated by ex-vivo experiments, in which HYJJ rescued TNFα-compromised IOs functions, i.e., elevated mitochondrial stress (MOS) and impaired regeneration capacity. IEC-6 cells co-culture with Mφs from HYJJ-treated experimental colitis mice showed an improved migration capacity as compared to those incubated with Mφs from untreated colitis mice. We conclude that HYJJ re-establishes homeostasis of the gut epithelium during colitis by suppressing inflammation and orchestrating cytokines interaction.


2020 ◽  
Author(s):  
Shan Liu ◽  
chi zhang ◽  
Zexin Zhang ◽  
Wei Guo ◽  
Jiangnan Xia ◽  
...  

Abstract Background and objective: Acupoint application (AA) therapy, a traditional Chinese medicine external treatment method, is recommended as a complementary Chinese medicine therapy for treating new coronavirus pneumonia (COVID-19), and can help improve curative effects, promote patient recovery, and improve immunity to prevent disease, but the mechanism is not clear. We sought to explore the key targets and mechanisms of Ephedra and Asarum, the main components used in AA, in the treatment of COVID-19 in this study. Methods: The active compounds and related targets of Ephedra and Asarum used in AA were screened by searching four databases. COVID-19-related target genes were identified from three disease databases, and the key targets of treating COVID-19 were obtained by Venn diagram using Cytoscape 3.2.1 software, gene ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to explore possible mechanisms and pathways. The verification of the binding force between the compounds and target genes was completed by performing molecular docking with Autodock and pymol software.Results: Twenty-four active components of AA corresponded to 252 targets, with 713 target genes related to COVID-19, and 56 key genes were selected. GO analysis results showed that biological processes mainly included the inflammatory and immune responses, and cell components were mainly the plasma membrane and nucleus, with molecular functions including protein binding and identical protein binding. The top pathways included Immune System, Cytokine Signaling in Immune System, Adaptive Immune System, Signaling by Interleukins, Innate Immune System, and Signaling by GPCR.Conclusion: The results of this study preliminarily verified that Ephedra and Asarum used in AA therapy could treat COVID-19 via multiple compounds and multi-pathways, which provided a basis for clinical application and further research.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098842
Author(s):  
Li Cheng ◽  
Fei Wang ◽  
Shun Bo Zhang ◽  
Qiu Yun You

Purpose Fufang Banlangen Keli (FBK) has been recommended for its clinical treatment of Coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome (SARS), but the mechanism of action is unclear. So, using network pharmacology and molecular docking, we studied the active components and mechanism of FBK in the treatment of COVID-19 and SARS. Methods The Encyclopedia of Traditional Chinese Medicine and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform were used to screen the active components by oral bioactivity and drug likeness. Then, PharmMapper and SwissTargetPrediction databases were used to screen potential target genes of active components; the related target genes of COVID-19 and SARS were obtained from the GeneCards database. The intersection of the active components and disease-related targets was performed by the Venny2.1.0 database. The DAVID6.8 database and KOBAS3.0 database were used to get gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation of gene targets. The “components-targets-pathways (C-T-P)” network of FBK was conducted by Cytoscape3.6.1 software. The top active components, angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 3 Cl, were imported into AutoDock and PyMOL for molecular docking. Results From the FBK, a total of 28 active components and 73 gene targets were screened through network pharmacology. Twenty pathways were analyzed, including pathways in cancer, nod-like receptor signaling pathway, and pancreatic cancer, etc. ( P < 0.05). A total of 337 items were obtained by GO functional enrichment analysis ( P < 0.05), including 257 items for biological process, 38 items for cell composition, and 42 items for molecular function. Furthermore, molecular docking studies were performed to study potential binding between the key gene targets and selected active components. Conclusion Based on network pharmacology and molecular docking technology, qingdainone, (2Z)-2-(2-oxoindolin-3-ylidene) indolin-3-one, sinensetin, and acacetin in FBK were verified to bind to ACE2 and SARS-COV-2 3 Cl, so as to treat COVID-19 and SARS.


2014 ◽  
Vol 42 (05) ◽  
pp. 1071-1098 ◽  
Author(s):  
Mao-Xing Li ◽  
Xi-Rui He ◽  
Rui Tao ◽  
Xinyuan Cao

In the present review, the literature data on the chemical constituents and biological investigations of the genus Pedicularis are summarized. Some species of Pedicularis have been widely applied in traditional Chinese medicine. A wide range of chemical components including iridoid glycosides, phenylpropanoid glycosides (PhGs), lignans glycosides, flavonoids, alkaloids and other compounds have been isolated and identified from the genus Pedicularis. In vitro and in vivo studies indicated some monomer compounds and extracts from the genus Pedicularis have been found to possess antitumor, hepatoprotective, anti-oxidative, antihaemolysis, antibacterial activity, fatigue relief of skeletal muscle, nootropic effect and other activities.


2010 ◽  
Vol 45 (9) ◽  
pp. 3702-3708 ◽  
Author(s):  
Shiby Paul ◽  
Cassia S. Mizuno ◽  
Hong Jin Lee ◽  
Xi Zheng ◽  
Sarah Chajkowisk ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6217
Author(s):  
Tianchi Liu ◽  
Ruiqi Wang ◽  
Chenpeng Liu ◽  
Jiahong Lu ◽  
Yitao Wang ◽  
...  

Luohuazizhu suppository is a Traditional Chinese Medicine used in clinic to treat cervicitis, which is prepared from Callicarpa nudiflora Hook. et Arn (C. nudiflora), an herbal Chinese medicine named Luohuazizhu. This study aimed to figure out the active constituents of C. nudiflora and the potential mechanism for its anti-cervicitis effect. The ethanol extract in C. nudiflora (CNE) and the different fractions of CNE extracted by petroleum ether (CNE-p), dichloromethane (CNE-d), and n-butanol (CNE-b) were tested in vivo for their anti-cervicitis effects. Then the isolated compounds from the CNE-p were tested in vitro for their anti-inflammatory activities. The results displayed that CNE-p, CNE-d, and CNE-b exhibited adequate anti-cervicitis effects, with CNE-p showing the highest efficacy. Further experiment demonstrated that CNE-p could significantly inhibit the expression of NLRP3 in vitro. Six diterpenoids obtained from the CNE-p showed the ability to regulate inflammatory factor levels in vitro. Among these compounds, compounds 1 (callicarpic acid A) and 2 (syn-3,4-seco-12S-hydroxy-15,16-epoxy-4(18),8(17),3(16),14(15)-labdatetraen-3-oic acid) were the most effective agents, and they also inhibited the expression level of NLRP3 in vitro. The results confirmed that C. nudiflora has significant anti-cervicitis effects and the diterpenoids were most likely to be its active components. These data provide scientific support for the clinic usage of Luohuazizhu suppository and the development of new agents in treating cervicitis.


2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.


2021 ◽  
Author(s):  
Xi Cen ◽  
Yan Wang ◽  
LeiLei Zhang ◽  
XiaoXiao Xue ◽  
Yan Wang ◽  
...  

Abstract BackgroundType 2 diabetes mellitus (T2DM) is regarded as Pi Dan disease in traditional Chinese medicine (TCM). Dahuang Huanglian Xiexin Decoction (DHXD), a classical TCM formula, has been used for treating Pi Dan disease in clinic, its pharmacological mechanism has not been elucidated. MethodsThis study used network pharmacological analysis and molecular docking approach to explore the mechanism of DHXD on T2DM. Firstly, the compounds in DHXD were obtained from TCMSP and TCMID databases, the potential targets were determined based on TCMSP and UniProt databases. Next, Genecards, Digenet and UniProt databases were used to identify the targets of T2DM. Then, the protein-protein interaction (PPI) network was established with overlapping genes of T2DM and compounds, and the core targets in the network were identified and analyzed. Then, the David database was used for GO and KEGG enrichment analysis. Finally, the target genes were selected and the molecular docking was completed by Autodock software to observe the binding level of active components with target genes.ResultsA total of 397 related components and 128 overlapping genes were identified. After enrichment analysis, it was found that HIF-1, TNF, IL-17 and other signaling pathways, as well as DNA transcription, gene expression, apoptosis and other cellular biological processes had the strongest correlation with the treatment of T2DM by DHXD, and most of them occurred in the extracellular space, plasma membrane and other places, which were related to enzyme binding and protein binding. In addition, 42 core genes of DHXD, such as VEGFA, TP53 and MAPK1, were considered as potential therapeutic targets, indicating the potential mechanism of DHXD on T2DM. Finally, the results of molecular docking showed that HIF-1 pathway had strong correlation with the target genes INSR and GLUT4, quercetin and berberine had the strongest binding power with them respectively.ConclusionThis study summarized the main components of DHXD in the treatment of T2DM, identified the core genes and pathways, and systematically analyzed the interaction of related targets, trying to lay the foundation for clarifying the potential mechanism of DHXD on T2DM, so as to carry out further research in the future.


Development ◽  
2001 ◽  
Vol 128 (18) ◽  
pp. 3405-3413 ◽  
Author(s):  
Adi Inbal ◽  
Naomi Halachmi ◽  
Charna Dibner ◽  
Dale Frank ◽  
Adi Salzberg

Homothorax (HTH) is a homeobox-containing protein, which plays multiple roles in the development of the embryo and the adult fly. HTH binds to the homeotic cofactor Extradenticle (EXD) and translocates it to the nucleus. Its function within the nucleus is less clear. It was shown, mainly by in vitro studies, that HTH can bind DNA as a part of ternary HTH/EXD/HOX complexes, but little is known about the transcription regulating function of HTH-containing complexes in the context of the developing fly. Here we present genetic evidence, from in vivo studies, for the transcriptional-activating function of HTH. The HTH protein was forced to act as a transcriptional repressor by fusing it to the Engrailed (EN) repression domain, or as a transcriptional activator, by fusing it to the VP16 activation domain, without perturbing its ability to translocate EXD to the nucleus. Expression of the repressing form of HTH in otherwise wild-type imaginal discs phenocopied hth loss of function. Thus, the repressing form was working as an antimorph, suggesting that normally HTH is required to activate the transcription of downstream target genes. This conclusion was further supported by the observation that the activating form of HTH caused typical hth gain-of-function phenotypes and could rescue hth loss-of-function phenotypes. Similar results were obtained with XMeis3, the Xenopus homologue of HTH, extending the known functional similarity between the two proteins. Competition experiments demonstrated that the repressing forms of HTH or XMeis3 worked as true antimorphs competing with the transcriptional activity of the native form of HTH. We also describe the phenotypic consequences of HTH antimorph activity in derivatives of the wing, labial and genital discs. Some of the described phenotypes, for example, a proboscis-to-leg transformation, were not previously associated with alterations in HTH activity. Observing the ability of HTH antimorphs to interfere with different developmental pathways may direct us to new targets of HTH. The HTH antimorph described in this work presents a new means by which the transcriptional activity of the endogenous HTH protein can be blocked in an inducible fashion in any desired cells or tissues without interfering with nuclear localization of EXD.


Sign in / Sign up

Export Citation Format

Share Document