scholarly journals Hypoxia promotes a perinatal-like progenitor state in the adult murine epicardium

Author(s):  
Angeliqua Sayed ◽  
Szimonetta Turoczi ◽  
Francisca Soares-da-Silva ◽  
Giovanna Marazzi ◽  
Jean-Sebastien Hulot ◽  
...  

Abstract The epicardium is a reservoir of progenitors that give rise to coronary vasculature and stroma during development and mediates cardiac vascular repair in lower vertebrates. However, its role as a source of progenitors in the adult mammalian heart remains unclear due to lack of clear lineage markers and single-cell culture systems to elucidate epicardial progeny cell fate. We found that in vivo exposure of mice to physiological hypoxia induced adult epicardial cells to re-enter the cell cycle and to express a subset of developmental genes. Multiplex single cell transcriptional profiling revealed a lineage relationship between epicardial cells and smooth muscle, stromal, and endothelial fates, and that physiological hypoxia promoted an endothelial cell fate. In vitro clonal analyses of purified epicardial cells showed that cell growth and subsequent differentiation is dependent upon hypoxia, and that resident epicardial cells retain progenitor identity in the adult mammalian heart with self-renewal and multilineage differentiation potential. These results point to a source of progenitor cells in the adult heart that can promote heart revascularization, providing an invaluable in vitro model for further studies.

2021 ◽  
Author(s):  
Angeliqua Sayed ◽  
Szimonetta Turoczi ◽  
Francisca Soares-da-Silva ◽  
Giovanna Marazzi ◽  
Jean-Sébastien Hulot ◽  
...  

AbstractThe epicardium is a reservoir of progenitors that give rise to coronary vasculature and stroma during development and mediates cardiac vascular repair in lower vertebrates. However, its role as a source of progenitors in the adult mammalian heart remains unclear due to lack of clear lineage markers and single-cell culture systems to elucidate epicardial progeny cell fate. We found that in vivo exposure of mice to physiological hypoxia induced adult epicardial cells to re-enter the cell cycle and to express a subset of developmental genes. Multiplex transcriptional profiling revealed a lineage relationship between epicardial cells and smooth muscle, stromal, and endothelial fates, and that physiological hypoxia promoted an endothelial cell fate. In vitro analyses of purified epicardial cells showed that cell growth and subsequent differentiation is dependent upon hypoxia, and that resident epicardial cells retain progenitor identity in the adult mammalian heart with self-renewal and multilineage differentiation potential. These results point to a source of progenitor cells in the adult heart that can promote heart revascularization, providing an invaluable in vitro model for further studies.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 244-244
Author(s):  
Sneha Borikar ◽  
Vivek Philip ◽  
Jennifer J. Trowbridge

Abstract During aging, the hematopoietic compartment undergoes lineage skewing, biased toward myeloid differentiation at the expense of lymphoid differentiation. This skewing clinically presents as impaired adaptive immunity and an increased risk of myeloproliferative disorders. However, little is known of the regulatory mechanisms underlying these changes in differentiation potential due in part to the inadequacy of current analytic techniques to evaluate lineage potency of individual progenitor cells. Recent demonstration that long-lived hematopoietic progenitor cells drive steady-state hematopoiesis has shifted focus onto the progenitor cell compartment to understand clonal dynamics of native hematopoiesis. Here, we critically assess the functional and molecular alterations in the multipotent progenitor cell pool with aging at the single-cell level. We developed novel in vitro and in vivo assays to define the heterogeneity of the LMPP population and test cell-fate potential from single cells. Our results demonstrate, for the first time, distinct, intrinsic lineage potential of single in vitro LMPPs at the cellular and molecular level. We find that clonal alterations in the lymphoid-primed multipotent progenitor (LMPP) compartment contributes to the functional alterations in hematopoiesis observed during aging. Unbiased single-cell transcriptome analysis reveals that true multipotential clones and lymphoid-restricted clones are reduced with aging, while bipotential and myeloid-restricted clones are modestly expanded. Furthermore, myeloid-restricted clones gain myc driver signatures, molecularly identifying clones emerging during aging that are susceptible to transformation. Our study reveals that aging alters the clonal composition of multipotential progenitor cells, directly contributing to the global loss of the lymphoid compartment and increased susceptibility to myeloid transformation. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Vikram Sabapathy ◽  
Gabrielle Costlow ◽  
Rajkumar Venkatadri ◽  
Murat Dogan ◽  
Sanjay Kumar ◽  
...  

: The advent of organoids has renewed researcher's interest in in vitro cell culture systems. A wide variety of protocols, primarily utilizing pluripotent stem cells, are under development to improve organoid generation to mimic organ development. The complexity of organoids generated is greatly influenced based on the method used. Understanding the process of kidney organoid formation gives developmental insights into how renal cells form, mature, and interact with the adjacent cells to form specific spatiotemporal structural patterns. This knowledge can bridge the gaps in understanding in vivo renal developmental processes. Evaluating genetic and epigenetic signatures in specialized cell types can help interpret the molecular mechanisms governing cell fate. In addition, development in single-cell RNA sequencing and 3D bioprinting and microfluidic technologies has led to better identification and understanding of a variety of cell types during differentiation and designing of complex structures to mimic the conditions in vivo. While several reviews have highlighted the application of kidney organoids, there is no comprehensive review of various methodologies specifically focusing on the kidney organoids. This review summarizes the updated differentiation methodologies, applications, and challenges associated with kidney organoids. Here we have comprehensively collated all the different variables influencing the organoid generation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hye-Yeong Jo ◽  
Youngsun Lee ◽  
Hongryul Ahn ◽  
Hyeong-Jun Han ◽  
Ara Kwon ◽  
...  

Abstract Human pluripotent stem cells (hPSCs) have promising therapeutic applications due to their infinite capacity for self-renewal and pluripotency. Genomic stability is imperative for the clinical use of hPSCs; however, copy number variation (CNV), especially recurrent CNV at 20q11.21, may contribute genomic instability of hPSCs. Furthermore, the effects of CNVs in hPSCs at the whole-transcriptome scale are poorly understood. This study aimed to examine the functional in vivo and in vitro effects of frequently detected CNVs at 20q11.21 during early-stage differentiation of hPSCs. Comprehensive transcriptome profiling of abnormal hPSCs revealed that the differential gene expression patterns had a negative effect on differentiation potential. Transcriptional heterogeneity identified by single-cell RNA sequencing (scRNA-seq) of embryoid bodies from two different isogenic lines of hPSCs revealed alterations in differentiated cell distributions compared with that of normal cells. RNA-seq analysis of 22 teratomas identified several differentially expressed lineage-specific markers in hPSCs with CNVs, consistent with the histological results of the altered ecto/meso/endodermal ratio due to CNVs. Our results suggest that CNV amplification contributes to cell proliferation, apoptosis, and cell fate specification. This work shows the functional consequences of recurrent genetic abnormalities and thereby provides evidence to support the development of cell-based applications.


2017 ◽  
Author(s):  
Clayton E Friedman ◽  
Quan Nguyen ◽  
Samuel W Lukowski ◽  
Han Sheng Chiu ◽  
Abbigail Helfer ◽  
...  

AbstractDifferentiation into diverse cell lineages requires the orchestration of gene regulatory networks guiding diverse cell fate choices. Utilizing human pluripotent stem cells, we measured expression dynamics of 17,718 genes from 43,168 cells across five time points over a thirty day time-course of in vitro cardiac-directed differentiation. Unsupervised clustering and lineage prediction algorithms were used to map fate choices and transcriptional networks underlying cardiac differentiation. We leveraged this resource to identify strategies for controlling in vitro differentiation as it occurs in vivo. HOPX, a non-DNA binding homeodomain protein essential for heart development in vivo was identified as dys-regulated in in vitro derived cardiomyocytes. Utilizing genetic gain and loss of function approaches, we dissect the transcriptional complexity of the HOPX locus and identify the requirement of hypertrophic signaling for HOPX transcription in hPSC-derived cardiomyocytes. This work provides a single cell dissection of the transcriptional landscape of cardiac differentiation for broad applications of stem cells in cardiovascular biology.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yuan-Hung Liu ◽  
Shih-Yun Huang ◽  
Yi-Shuan Lin ◽  
Hsing-Yu Huang

Recent studies report that postnatal mammalian hearts undergo cardiomyocyte refreshment. While the exact origin of the cells involved in postnatal cardiomyogenesis remains unclear. Here, we identified a pool of Nkx2.5 enhancer expressing cells in the postnatal mouse heart with cardiomyogenic differentiation potential in vitro. We tracked the expression of a cardiac-specific enhancer of Nkx2.5 using inducible Nkx2.5 enhancer-Cre mice from embryonic development to adulthood and post-myocardial infarction (MI) and documented the Nkx2.5 enhancer expressing cells directly contribute to postnatal cardiomyogenesis in vivo. Upon genetic ablation of these activated progenitors after myocardial injury, the cardiac function deteriorated. Transcriptomic analysis of Nkx2.5 enhancer expressing cells showed high expression of heart development genes. To trace the developmental origin of the activated Nkx2.5 cardiomyogenic progenitor cells, we created different lineage-Cre/Nkx2.5 enh-eGFP/ROSA26 reporter triple transgenic mice. Post-MI Nkx2.5 cardiomyogenic progenitor cells originated from the embryonic epicardial cells, not from the pre-existing cardiomyocytes, endothelial cells, cardiac neural crest cells, or perinatal/postnatal epicardial cells. Together, this study confirmed that cardiac lineage-specific progenitor cells, which originate from embryonic epicardium-derived cells, contribute to postnatal mammalian cardiomyogenesis.


2020 ◽  
Vol 7 ◽  
Author(s):  
Lingfang Zhuang ◽  
Lin Lu ◽  
Ruiyan Zhang ◽  
Kang Chen ◽  
Xiaoxiang Yan

Advances in single-cell RNA sequencing (scRNA-seq) technology have recently shed light on the molecular mechanisms of the spatial and temporal changes of thousands of cells simultaneously under homeostatic and ischemic conditions. The aim of this study is to investigate whether it is possible to integrate multiple similar scRNA-seq datasets for a more comprehensive understanding of diseases. In this study, we integrated three representative scRNA-seq datasets of 27,349 non-cardiomyocytes isolated at 3 and 7 days after myocardial infarction or sham surgery. In total, seven lineages, including macrophages, fibroblasts, endothelia, and lymphocytes, were identified in this analysis with distinct dynamic and functional properties in healthy and nonhealthy hearts. Myofibroblasts and endothelia were recognized as the central hubs of cellular communication via ligand-receptor interactions. Additionally, we showed that macrophages from different origins exhibited divergent transcriptional signatures, pathways, developmental trajectories, and transcriptional regulons. It was found that myofibroblasts predominantly expand at 7 days after myocardial infarction with pro-reparative characteristics. We identified signature genes of myofibroblasts, such as Postn, Cthrc1, and Ddah1, among which Ddah1 was exclusively expressed on activated fibroblasts and exhibited concordant upregulation in bulk RNA sequencing data and in vivo and in vitro experiments. Collectively, this compendium of scRNA-seq data provides a valuable entry point for understanding the transcriptional and dynamic changes of non-cardiomyocytes in healthy and nonhealthy hearts by integrating multiple datasets.


Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1406-1414 ◽  
Author(s):  
Dirk Loeffler ◽  
Timm Schroeder

Abstract Cells and the molecular processes underlying their behavior are highly dynamic. Understanding these dynamic biological processes requires noninvasive continuous quantitative single-cell observations, instead of population-based average or single-cell snapshot analysis. Ideally, single-cell dynamics are measured long-term in vivo; however, despite progress in recent years, technical limitations still prevent such studies. On the other hand, in vitro studies have proven to be useful for answering long-standing questions. Although technically still demanding, long-term single-cell imaging and tracking in vitro have become valuable tools to elucidate dynamic molecular processes and mechanisms, especially in rare and heterogeneous populations. Here, we review how continuous quantitative single-cell imaging of hematopoietic cells has been used to solve decades-long controversies. Because aberrant cell fate decisions are at the heart of tissue degeneration and disease, we argue that studying their molecular dynamics using quantitative single-cell imaging will also improve our understanding of these processes and lead to new strategies for therapies.


2020 ◽  
Vol 21 (21) ◽  
pp. 8225
Author(s):  
Mukul Girotra ◽  
Vincent Trachsel ◽  
Aline Roch ◽  
Matthias P. Lutolf

Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. Under homeostasis, HSCs in their native bone marrow niches are believed to undergo asymmetric cell divisions (ACDs), with one daughter cell maintaining HSC identity and the other committing to differentiate into various mature blood cell types. Due to the lack of key niche signals, in vitro HSCs differentiate rapidly, making it challenging to capture and study ACD. To overcome this bottleneck, in this study, we used interferon alpha (IFNα) treatment to ”pre-instruct” HSC fate directly in their native niche, and then systematically studied the fate of dividing HSCs in vitro at the single cell level via time-lapse analysis, as well as multigene and protein expression analysis. Triggering HSCs’ exit from dormancy via IFNα was found to significantly increase the frequency of asynchronous divisions in paired daughter cells (PDCs). Using single-cell gene expression analyses, we identified 12 asymmetrically expressed genes in PDCs. Subsequent immunocytochemistry analysis showed that at least three of the candidates, i.e., Glut1, JAM3 and HK2, were asymmetrically distributed in PDCs. Functional validation of these observations by colony formation assays highlighted the implication of asymmetric distribution of these markers as hallmarks of HSCs, for example, to reliably discriminate committed and self-renewing daughter cells in dividing HSCs. Our data provided evidence for the importance of in vivo instructions in guiding HSC fate, especially ACD, and shed light on putative molecular players involved in this process. Understanding the mechanisms of cell fate decision making should enable the development of improved HSC expansion protocols for therapeutic applications.


2018 ◽  
Vol 206 (1-2) ◽  
pp. 35-45 ◽  
Author(s):  
Christian Klopsch ◽  
Ralf Gaebel ◽  
Heiko Lemcke ◽  
Martin Beyer ◽  
Praveen Vasudevan ◽  
...  

In-depth knowledge of the mechanisms induced by early postischemic cardiac endogenous mesenchymal stem cells (MSCs) in the acutely ischemic heart could advance our understanding of cardiac regeneration. Herein, we aimed to identify, isolate, and initially characterize the origin, kinetics and fate of cardiac MSCs. This was facilitated by in vivo genetic cell fate mapping through green fluorescent protein (GFP) expression under the control of vimentin induction after acute myocardial infarction (MI). Following permanent ligation of the left anterior descending coronary artery in CreER+ mTom/mGFP+ mice, vimentin/GFP+ cells revealed ischemia-responsive activation, survival, and local enrichment inside the peri-infarction border zone. Fluorescence-activated cell sorting (FACS)-isolated vimentin/GFP+ cells could be strongly expanded in vitro with clonogenic precursor formation and revealed MSC-typical cell morphology. Flow-cytometric analyses demonstrated an increase in cardiac vimentin/GFP+ cells in the ischemic heart, from a 0.6% cardiac mononuclear cell (MNC) fraction at 24 h to 1.6% at 72 h following MI. Sca-1+CD45– cells within the vimentin/GFP+ subtype of this MNC fraction increased from 35.2% at 24 h to 74.6% at 72 h after MI. The cardiac postischemic vimentin/GFP+ MNC subtype showed multipotent adipogenic, chondrogenic, and osteogenic differentiation potential, which is distinctive for MSCs. In conclusion, we demonstrated a seemingly proliferative first response of vimentin- induced cardiac endogenous MSCs in the acutely ischemic heart. Genetically, GFP-targeted in vivo cell tracking, isolation, and in vitro expansion of this cardiac MSC subtype could help to clarify their reparative status in inflammation, fibrogenesis, cell turnover, tissue homeostasis, and myocardial regeneration.


Sign in / Sign up

Export Citation Format

Share Document