scholarly journals Climate change alters impacts of extreme climate events on a tropical perennial tree crop

Author(s):  
Thomas Creedy ◽  
Rebecca A. Asare ◽  
Alexandra C. Morel ◽  
Mark Hirons ◽  
Yadvinder Malhi ◽  
...  

Abstract Anthropogenic climate change causes more frequent and intense fluctuations in the El Niño Southern Oscillation (ENSO). Understanding the effects of ENSO on agricultural systems is crucial for predicting and ameliorating impacts on lives and livelihoods, particularly in perennial tree crops, which may show both instantaneous and delayed responses. Using cocoa production in Ghana as a model system, here we show that in recent times, El Niño years experience reductions in cocoa production followed by several years of increased production, a significantly different pattern than prior to the 1980s. ENSO phase affects the climate in Ghana, and over the same time period, we see concomitant significant shifts in the climatic conditions resulting from ENSO extremes, with increasing temperature and water stress. Our results illustrate the big data analyses necessary to improve understanding of perennial crop responses to climate change in general, and climate extremes in particular.

2012 ◽  
Vol 1 (1) ◽  
Author(s):  
Johnny Chavarría Viteri ◽  
Dennis Tomalá Solano

La variabilidad climática es la norma que ha modulado la vida en el planeta. Este trabajo demuestra que las pesquerías y acuicultura costera ecuatorianas no son la excepción, puesto que tales actividades están fuertemente influenciadas por la variabilidad ENSO (El Niño-Oscilación del Sur) y PDO (Oscilación Decadal del Pacífico), planteándose que la señal del cambio climático debe contribuir a esta influencia. Se destaca también que, en el análisis de los efectos de la variabilidad climática sobre los recursos pesqueros, el esfuerzo extractivo también debe ser considerado. Por su parte, la acción actual de la PDO está afectando la señal del cambio climático, encontrándose actualmente en fases opuestas. Se espera que estas señales entren en fase a finales de esta década, y principalmente durante la década de los 20 y consecuentemente se evidencien con mayor fuerza los efectos del Cambio Climático. Palabras Clave: Variabilidad Climática, Cambio Climático, ENSO, PDO, Pesquerías, Ecuador. ABSTRACT Climate variability is the standard that has modulated life in the planet. This work shows that the Ecuadorian  fisheries and aquaculture are not the exception, since such activities are strongly influenced by ENSO variability (El Niño - Southern Oscillation) and PDO (Pacific Decadal Oscillation), considering that the signal of climate change should contribute to this influence. It also emphasizes that in the analysis of the effects of climate variability on the fishing resources, the extractive effort must also be considered. For its part, the current action of the PDO is affecting the signal of climate change, now found on opposite phases. It is hoped that these signals come into phase at the end of this decade, and especially during the decade of the 20’s and more strongly evidencing the effects of climate change. Keywords: Climate variability, climate change, ENSO (El Niño - Southern Oscillation) and PDO  (Pacific Decadal Oscillation); fisheries, Ecuador. Recibido: mayo, 2012Aprobado: agosto, 2012


2009 ◽  
Vol 39 (4) ◽  
pp. 1003-1011 ◽  
Author(s):  
Philip Martin Fearnside

Global warming has potentially catastrophic impacts in Amazonia, while at the same time maintenance of the Amazon forest offers one of the most valuable and cost-effective options for mitigating climate change. We know that the El Niño phenomenon, caused by temperature oscillations of surface water in the Pacific, has serious impacts in Amazonia, causing droughts and forest fires (as in 1997-1998). Temperature oscillations in the Atlantic also provoke severe droughts (as in 2005). We also know that Amazonian trees die both from fires and from water stress under hot, dry conditions. In addition, water recycled through the forest provides rainfall that maintains climatic conditions appropriate for tropical forest, especially in the dry season. What we need to know quickly, through intensified research, includes progress in representing El Niño and the Atlantic oscillations in climatic models, representation of biotic feedbacks in models used for decision-making about global warming, and narrowing the range of estimating climate sensitivity to reduce uncertainty about the probability of very severe impacts. Items that need to be negotiated include the definition of "dangerous" climate change, with the corresponding maximum levels of greenhouse gases in the atmosphere. Mitigation of global warming must include maintaining the Amazon forest, which has benefits for combating global warming from two separate roles: cutting the flow the emissions of carbon each year from the rapid pace of deforestation, and avoiding emission of the stock of carbon in the remaining forest that can be released by various ways, including climate change itself. Barriers to rewarding forest maintenance include the need for financial rewards for both of these roles. Other needs are for continued reduction of uncertainty regarding emissions and deforestation processes, as well as agreement on the basis of carbon accounting. As one of the countries most subject to impacts of climate change, Brazil must assume the leadership in fighting global warming.


2010 ◽  
Vol 6 (4) ◽  
pp. 525-530 ◽  
Author(s):  
A. A. Tsonis ◽  
K. L. Swanson ◽  
G. Sugihara ◽  
P. A. Tsonis

Abstract. Climate change has been implicated in the success and downfall of several ancient civilizations. Here we present a synthesis of historical, climatic, and geological evidence that supports the hypothesis that climate change may have been responsible for the slow demise of Minoan civilization. Using proxy ENSO and precipitation reconstruction data in the period 1650–1980 we present empirical and quantitative evidence that El Nino causes drier conditions in the area of Crete. This result is supported by modern data analysis as well as by model simulations. Though not very strong, the ENSO-Mediterranean drying signal appears to be robust, and its overall effect was accentuated by a series of unusually strong and long-lasting El Nino events during the time of the Minoan decline. Indeed, a change in the dynamics of the El Nino/Southern Oscillation (ENSO) system occurred around 3000 BC, which culminated in a series of strong and frequent El Nino events starting at about 1450 BC and lasting for several centuries. This stressful climatic trend, associated with the gradual demise of the Minoans, is argued to be an important force acting in the downfall of this classic and long-lived civilization.


2018 ◽  
Vol 15 (21) ◽  
pp. 6371-6386 ◽  
Author(s):  
Hinrich Schaefer ◽  
Dan Smale ◽  
Sylvia E. Nichol ◽  
Tony M. Bromley ◽  
Gordon W. Brailsford ◽  
...  

Abstract. The El Niño–Southern Oscillation (ENSO) has been suggested as a strong forcing in the methane cycle and as a driver of recent trends in global atmospheric methane mole fractions [CH4]. Such a sensitivity of the global CH4 budget to climate events would have important repercussions for climate change mitigation strategies and the accuracy of projections for future greenhouse forcing. Here, we test the impact of ENSO on atmospheric CH4 in a correlation analysis. We use local and global records of [CH4], as well as stable carbon isotopic records of atmospheric CH4 (δ13CH4), which are particularly sensitive to the combined ENSO effects on CH4 production from wetlands and biomass burning. We use a variety of nominal, smoothed, and detrended time series including growth rate records. We find that at most 36 % of the variability in [CH4] and δ13CH4 is attributable to ENSO, but only for detrended records in the southern tropics. Trend-bearing records from the southern tropics, as well as all studied hemispheric and global records, show a minor impact of ENSO, i.e. < 24 % of variability explained. Additional analyses using hydrogen cyanide (HCN) records show a detectable ENSO influence on biomass burning (up to 51 %–55 %), suggesting that it is wetland CH4 production that responds less to ENSO than previously suggested. Dynamics of the removal by hydroxyl likely counteract the variation in emissions, but the expected isotope signal is not evident. It is possible that other processes obscure the ENSO signal, which itself indicates a minor influence of the latter on global CH4 emissions. Trends like the recent rise in atmospheric [CH4] can therefore not be attributed to ENSO. This leaves anthropogenic methane sources as the likely driver, which must be mitigated to reduce anthropogenic climate change.


2018 ◽  
Vol 31 (15) ◽  
pp. 6189-6207 ◽  
Author(s):  
Scott B. Power ◽  
François P. D. Delage

Increases in greenhouse gas emissions are expected to cause changes both in climatic variability in the Pacific linked to El Niño–Southern Oscillation (ENSO) and in long-term average climate. While mean state and variability changes have been studied separately, much less is known about their combined impact or relative importance. Additionally, studies of projected changes in ENSO have tended to focus on changes in, or adjacent to, the Pacific. Here we examine projected changes in climatic conditions during El Niño years and in ENSO-driven precipitation variability in 36 CMIP5 models. The models are forced according to the RCP8.5 scenario in which there are large, unmitigated increases in greenhouse gas concentrations during the twenty-first century. We examine changes over much of the globe, including 25 widely spread regions defined in the IPCC special report Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). We confirm that precipitation variability associated with ENSO is projected to increase in the tropical Pacific, consistent with earlier research. We also find that the enhanced tropical Pacific variability drives ENSO-related variability increases in 19 SREX regions during DJF and in 18 during JJA. This externally forced increase in ENSO-driven precipitation variability around the world is on the order of 15%–20%. An increase of this size, although substantial, is easily masked at the regional level by internally generated multidecadal variability in individual runs. The projected changes in El Niño–driven precipitation variability are typically much smaller than projected changes in both mean state and ENSO neutral conditions in nearly all regions.


2017 ◽  
Vol 14 (18) ◽  
pp. 4355-4374 ◽  
Author(s):  
Istem Fer ◽  
Britta Tietjen ◽  
Florian Jeltsch ◽  
Christian Wolff

Abstract. The El Niño–Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature–eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.


2021 ◽  
Author(s):  
Ícaro Monteiro Galvão ◽  
Gislaine Silva Pereira ◽  
Paulo Sentelhas

Abstract Air temperature and relative humidity are the main drivers of many fungal diseases, such as moniliasis (Moniliophthora roreri), which affects cocoa production worldwide. This disease occurs in some Latin American countries; however, it has not yet occurred in Brazil. Moniliasis could cause serious damage to the Brazilian cocoa production if present in the country. Therefore, to know the risks of moniliasis to cocoa production in the largest Brazilian producing region, in the state of Bahia, this study investigated the climatic favorability for the occurrence of this disease in this state, by defining and mapping the climatic risks and by assessing the influence of El Niño Southern Oscillation (ENSO) phases on it. Daily air temperature and relative humidity data from 28 weather stations of the national weather network in the state of Bahia, between 1988 and 2018, were employed to determine the risk index for cocoa moniliasis occurrence (RICM), based on the number of days favorable to the disease, which was categorized in five levels of favorability, ranging from “unfavorable” to “very favorable”. Seasonal and annual RICM maps were generated by a multiple linear regression procedure, considering raster layers of latitude, longitude, and altitude. The maps showed a high spatial and temporal RICM variability in the state of Bahia, with the highest risk for moniliasis occurrence in the eastern part of the state, where most producing areas are located. The ENSO phase showed to influence cocoa moniliasis occurrence, with the years with a transition between El Niño and Neutral phases being the most critical for this disease in majority of assessed locations. These results show that cocoa producers in the state of Bahia, Brazil, should be concerned with moniliasis occurrence as a potential disease for their crops, mainly in the traditional producing regions and when ENOS is in a transition from El Niño to Neutral.


Sign in / Sign up

Export Citation Format

Share Document