scholarly journals Correlating MRI-Based Brain Volumetry and Cognitive Assessment in Down Syndrome Patients

Author(s):  
Osama Hamadelseed ◽  
Thomas Skutella

Abstract INTRODUCTIONDown syndrome (DS) is the most common genetic cause of intellectual disability. Children and adults with DS show deficits in various aspects of language performance and explicit memory. Here we use magnetic resonance imaging (MRI) on children and adults with DS to characterize changes in the volume of specific brain structures involved in memory and language and their relationship to features of cognitive-behavioral phenotypes.METHODSThirteen children and adults with the DS phenotype and 12 age- and gender-matched healthy controls were analyzed by MRI and underwent a psychological evaluation for language and cognitive abilities.RESULTSThe neuropsychological profile of DS patients showed deficits in different cognition and language domains in correlation with reduced volumes of specific regional and subregional brain structures. Intriguingly, our DS patients showed also a reduced parahippocampal gyrus volume, in contrast with the results found by other researchers.CONCLUSIONSThe memory functions and language skills affected in our DS patients correlate significantly with the reduced volume of specific brain regions, allowing us to understand DS's cognitive-behavioral phenotype. Our results provide an essential basis for early intervention and the design of rehabilitation management protocols.

2021 ◽  
Author(s):  
Osama Hamadelseed ◽  
Thomas Skutella

Abstract INTRODUCTION: Down syndrome (DS) is the most common genetic cause of intellectual disability. Here, we use magnetic resonance imaging (MRI) on children and adults with DS to characterize changes in the volume of specific brain structures involved in memory and language and their relationship to features of cognitive-behavioral phenotypes.METHODS: Thirteen children and adults with the DS phenotype and 12 age- and gender-matched healthy controls were analyzed by MRI and underwent a psychological evaluation for language and cognitive abilities.RESULTS: The neuropsychological profile of DS patients showed deficits in different cognition and language domains in correlation with reduced volumes of specific regional and subregional brain structures.CONCLUSIONS: The memory functions and language skills affected in our DS patients correlate significantly with the reduced volume of specific brain regions, allowing us to understand DS's cognitive-behavioral phenotype. Our results provide an essential basis for early intervention and the design of rehabilitation management protocols.


2011 ◽  
Vol 26 (S2) ◽  
pp. 960-960
Author(s):  
J.L. Villegas Martínez ◽  
J.A. Blanco Garrote ◽  
F. Uribe Ladrón de Cegama ◽  
B. Arribas Simón ◽  
G. Cabús Piñol

IntroductionDiffusion tensor imaging (DTI) is a magnetic resonance imaging technique that have increasingly being used for the non-invasive evaluation of brain white matter (WM) abnormalities. Several studies suggest that the normal integration of cerebral function may be compromised in schizophrenia. Abnormalities in WM tracts may be directly relevant for the neuropathology of schizophrenia.ObjetivesThe purpose of this review was to discuss recent DTI findings in schizophrenia and a methodologic analysis.MethodsThe literature search was performed with the search engine PubMed of the U.S. National Library of Medicine. Search strategy used was based on the Cochrane review technique, limited to the period between 1998 (first report on DTI and schizophrenia) and May 2010. And limited to ‘Title/Abstract’. The reference lists of these studies were used to identify additional studies.ResultsThere is a striking amount of heterogeneity in findings, probably by methodologic problems. Brain regions such as the cingulate bundle, corpus callosum, and regions within frontal and temporal WM have a proportionally larger number of positive findings across the studies. In addition, WM tracts as The superior longitudinal fasciculus, fronto-occipital longitudinal fasciculi, uncinate fasciculi, frontal longitudinal fasciculus and the arcuate fasciculus have also positive findings in patients with schizophrenia. Other brain structures as the cerebellar peduncles, the fornix, the hippocampus and parahippocampal gyrus, the thalamic and optic radiations have been evaluated and shown positive findings. However, these findings are not present in all studies. DTI abnormalities in first-episode patients are less robust than in chronic patients.ConclusionsRecent DTI findings further support the hypothesis of structural dysconnectivity in schizophrenia.


2019 ◽  
Vol 35 (3) ◽  
pp. 228-234
Author(s):  
Warren Lo ◽  
Xiangrui Li ◽  
Kristen Hoskinson ◽  
Kelly McNally ◽  
Melissa Chung ◽  
...  

Aim: This pilot study explored whether childhood stroke impairs performance on theory of mind (ToM) tasks and whether ToM task performance correlates with resting state connectivity in brain regions linked with social cognition. Method: We performed a case-control study of 10 children with stroke and 10 age- and gender-matched controls. They completed 2 ToM tasks, and resting state connectivity was measured with functional magnetic resonance imaging (MRI). Results: Children with stroke performed worse than controls on conative ToM tasks. Resting state connectivity in the central executive network was significantly higher and connectivity between right and left inferior parietal lobules was significantly decreased in children with stroke. Resting state activity and ToM performance were not significantly correlated. Interpretation: Childhood stroke results in poorer performance on specific ToM tasks. Stroke is associated with changes in resting state connectivity in networks linked with social cognition including ToM. Although the basis for these changes in connectivity is not well understood, these results may provide preliminary insights into potential mechanisms affecting social cognition after stroke. The findings suggest that further study of the effect of childhood stroke on network connectivity may yield insights as to how stroke affects cognitive functions in children.


1999 ◽  
Vol 29 (4) ◽  
pp. 963-970 ◽  
Author(s):  
PERMINDER S. SACHDEV ◽  
HENRY BRODATY

Background. Of the midline brain structures, abnormalities have been demonstrated in the corpus callosum and cerebellum in young schizophrenic patients. Whether similar abnormalities are also present in late-onset schizophrenia (LOS) is not known.Methods. The mid-sagittal cross-sectional areas of brain regions, in particular the corpus callosum and cerebellum, on magnetic resonance imaging were examined in a group of patients with late-onset schizophrenia (N=25) and contrasted with two comparison groups – early-onset schizophrenia (EOS) (N=2524) and healthy volunteers (NC) (N=2530) matched for age and gender.Results. While the mean corpus callosum area in the LOS group was smaller than in the EOS (by 10·2%) and NC (by 6·2%) groups, the three groups did not differ statistically in the corpus callosum area or the corpus callosum to cerebrum ratios. The cross-sectional cerebellar areas or the cerebellum: cerebrum ratios also did not differ across the groups. The brainstem was smaller in the schizophrenic groups because of smaller cross-sectional areas of the pons, a statistically significant difference which could not be accounted for by any gross lesions on visual inspection.Conclusion. We found no abnormality in the mid-sagittal area of the corpus callosum and cerebellum in our early- or late-onset schizophrenia subjects. The significance of the finding of a smaller pontine cross-sectional area is unclear and speculation on it awaits independent replication using a volumetric measure.


2011 ◽  
Vol 69 (2a) ◽  
pp. 242-252 ◽  
Author(s):  
Giuseppe Pastura ◽  
Paulo Mattos ◽  
Emerson Leandro Gasparetto ◽  
Alexandra Prufer de Queiroz Campos Araújo

Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated girus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging.


Author(s):  
Angela D. Friederici ◽  
Noam Chomsky

This chapter reviews the neural underpinning of normal language acquisition and asks not only at which age certain milestones in language acquisition are achieved, but moreover to what extent is this achievement dependent on the maturation of particular brain structures. In our recent model, the neural basis of the developing language system is described to reflect two major phases. The available data provide consistent evidence that very early on an infant is able to extract language-relevant information from the acoustic input. This first phase covers the first three years of life when language processing is largely input-driven and supported by the temporal cortex and the ventral part of the network. A second phase extends beyond age 3, when top-down processes come into play, and the left inferior frontal cortex and the dorsal part of the language network are recruited to a larger extent. Development towards full language performance beyond age 3 is dependent on maturational changes in the gray and white matter. An increased language ability is correlated with an increase in structural and functional connectivity between language-related brain regions in the left hemisphere, the inferior frontal gyrus and the posterior superior temporal gyrus/superior temporal sulcus.


2015 ◽  
Vol 29 (3) ◽  
pp. 107-111
Author(s):  
A. Karimizadeh ◽  
Amin Mahnam ◽  
M. R. Yazdchi ◽  
M. A. Besharat

Abstract. During the last decade, an increasing number of studies have used neuroscientific methods to examine the relationships between different personality traits and brain structures. This includes the Magnetic Resonance Imaging (MRI)-based analysis of correlations between individual differences in personality traits and the structural variance of specific brain regions. Perfectionism is a personality trait that remains relatively stable over time, and it is influenced by heredity. In this study, the possible brain regions that structurally correlated with both positive and negative perfectionism were investigated. Voxel-based morphometry was used to analyze the whole brain MRI images of 49 participants, and their levels of perfectionism were also evaluated using a standard scale. The statistical analysis revealed significant correlations between negative perfectionism and the gray matter volume of the thalamus and left posterior parietal cortex (precuneus) structures. This finding suggests that differences in perfectionism between individuals may reflect structural variances in these regions of the brain.


2021 ◽  
Author(s):  
Zhuoting Zhu ◽  
Wenyi Hu ◽  
Huan Liao ◽  
Danli Shi ◽  
Zachary Tan ◽  
...  

AbstractObjectiveTo investigate the association of visual impairment (VI) with brain structures in the UK Biobank Study.MethodsThe UK Biobank Study is a large prospective study that recruited more than 500,000 participants aged 40-69 from 2006 to 2010 across the UK. Visual acuity (VA) of worse than 0.3 LogMAR units (Snellen 20/40) was defined as VI. Structural magnetic resonance imaging (MRI) data were obtained using a 3.0-T MRI imager. Volumetric measures of five global brain volumes (total brain volume, total grey matter, total white matter, cerebrospinal fluid (CSF), brain stem) and the volumes of seven specific brain region (thalamus, caudate nucleus, basal ganglia, pallidum, hippocampus, amygdala and nucleus accumbens) were included in the present analysis. Multivariable linear regression was used to investigate the association of VI with global and specific brain volumes.ResultsA total of 8976 participants free of neurological disorders at baseline assessment were included for the present analysis. The prevalence of VI was 0.02% (n=181). After adjusting for a range of cofounding factors, VI was significantly associated with decreased volumes of the total brain (β = -0.12, 95% confidence interval (CI) -0.23 to 0.00, P = 0.049), thalamus (β = -0.16, 95% CI -0.18 to -0.04, P = 0.010), caudatenucleus (β = -0.14, 95% CI -0.27 to 0.00, P = 0.046), pallidum (β = -0.15, 95% CI-0.27 to -0.02, P = 0.028) and amygdala (β = -0.18, 95% CI -0.31 to -0.04, P = 0.012).InterpretationWe found that VI is associated with a decrease in total brain volumes and the volumes of specific brain regions implicated in neurodegenerative diseases.


ADMET & DMPK ◽  
2017 ◽  
Vol 5 (4) ◽  
pp. 234-241
Author(s):  
Xiuxin Wang ◽  
Yi Zhao ◽  
Huiling Zhang ◽  
Gang Yin ◽  
Yangkun Luo ◽  
...  

Radiotherapy (RT) is the standard treatment for nasopharyngeal carcinoma, which often causes inevitable brain injury in the process of treatment. The majority of patients has no abnormal signal or density change of the conventional magnetic resonance imaging (MRI) and computed tomography (CT) examination in the long-term follow-up after radiation therapy. However, when there is a visible CT and conventional MR imaging changes, the damage often has been severe and lack of effective treatments, seriously influencing the prognosis of patients. Therefore, the present study aimed to investigate the abnormal changes in nasopharyngeal carcinoma (NPC) patients after RT. In the present study, we exploited the machine learning framework which contained two parts: feature extraction and classification to automatically detect the brain injury. Our results showed that the method could effectively identify the abnormal regions reduced by radiotherapy. The highest classification accuracy was 82.5 % in the abnormal brain regions. The parahippocampal gyrus was the highest accuracy region, which suggested that the parahippocampal gyrus could be most sensitive to radiotherapy and involved in the pathogenesis of radiotherapy-induced brain injury in NPC patients.


2019 ◽  
Vol 30 (4) ◽  
pp. 2542-2554 ◽  
Author(s):  
Maryam Ghaleh ◽  
Elizabeth H Lacey ◽  
Mackenzie E Fama ◽  
Zainab Anbari ◽  
Andrew T DeMarco ◽  
...  

Abstract Two maintenance mechanisms with separate neural systems have been suggested for verbal working memory: articulatory-rehearsal and non-articulatory maintenance. Although lesion data would be key to understanding the essential neural substrates of these systems, there is little evidence from lesion studies that the two proposed mechanisms crucially rely on different neuroanatomical substrates. We examined 39 healthy adults and 71 individuals with chronic left-hemisphere stroke to determine if verbal working memory tasks with varying demands would rely on dissociable brain structures. Multivariate lesion–symptom mapping was used to identify the brain regions involved in each task, controlling for spatial working memory scores. Maintenance of verbal information relied on distinct brain regions depending on task demands: sensorimotor cortex under higher demands and superior temporal gyrus (STG) under lower demands. Inferior parietal cortex and posterior STG were involved under both low and high demands. These results suggest that maintenance of auditory information preferentially relies on auditory-phonological storage in the STG via a nonarticulatory maintenance when demands are low. Under higher demands, sensorimotor regions are crucial for the articulatory rehearsal process, which reduces the reliance on STG for maintenance. Lesions to either of these regions impair maintenance of verbal information preferentially under the appropriate task conditions.


Sign in / Sign up

Export Citation Format

Share Document