miR-486 Expression is Regulated by DNA Methylation in Osteosarcoma

Author(s):  
Heidi Namløs ◽  
Magne Skårn ◽  
Deeqa Ahmed ◽  
Iwona Grad ◽  
Kim Andresen ◽  
...  

Abstract Osteosarcoma is the most common primary malignant tumour of bone occurring in children and young adolescents, and is characterised by complex genetic and epigenetic changes. The miRNA miR-486-5p has been shown to be downregulated in osteosarcoma and in cancer in general. To investigate if the miR-486 locus is epigenetically regulated, we integrated DNA methylation and miR-486-5p expression data using cohorts of osteosarcoma cell lines and patient samples. An upstream CpG island of mir-486 was shown to be highly methylated in osteosarcoma cell lines as determined by methylation-specific PCR and direct bisulfite sequencing. High methylation levels were seen for osteosarcoma patient samples, cell xenografts and cell lines based on quantitative methylation-specific PCR. 5-Aza-2’-deoxycytidine treatment of osteosarcoma cell lines caused induction of miR-486-5p in osteosarcoma cell lines. When overexpressed, miR-486-5p affected cell morphology. miR-486-5p represents a highly cancer relevant, epigenetically regulated miRNA in osteosarcoma.

2020 ◽  
Author(s):  
Uttariya Pal ◽  
Sujasha Ghosh ◽  
Anil Mukund Limaye

AbstractThe seven-transmembrane G-protein coupled estrogen receptor (GPER) relays short-term non-genomic responses in target cells and tissues. It is a proposed tumor suppressor, which frequently undergoes down-modulation in primary tumors of the breast, ovary, and endometrium. A study by Liu and co-workers reported the loss of GPER expression in colorectal cancer and attributed it to DNA methylation-dependent silencing. The present study is based on the hypothesis that GPER expression is inversely correlated with methylation in the upstream CpG island (upCpGi) in the GPER locus. Methylation in the upCpGi was analysed by bisulfite sequencing and correlated with GPER expression in a panel of colon cancer cell lines The bisulfite sequencing results show the presence of a differentially methylated region (DMR) comprising of the downstream eight CpGs of the upCpGi. Methylation in the DMR correlated inversely with GPER expression. We compared two cell lines, namely SW620 and COLO-320DM, in terms of their viability in response to varying concentrations of G1, a GPER specific agonist, which is known to induce cell cycle arrest and apoptosis in colon cancer cell lines. SW-620 cells, which had the least methylated DMR and the highest level of GPER expression, showed significant loss of viability with 1 μM G1. On the other hand, COLO-320DM, which had the most methylated DMR and the lowest level of GPER expression, did not show a significant response to 1 μM G1. At 5 μM G1, SW620 cells showed a greater reduction in viability than COLO-320DM cells. Our study demonstrates the inverse correlation between DNA methylation in the DMR and GPER expression. GPER is a non-canonical form of estrogen receptor, and estrogen is believed to exert its oncoprotective effect in the colon via GPER. DNA methylation-dependent silencing of GPER may, at least in part, the underlying reason behind the loss of estrogen’s oncoprotective effect in the colon. Future studies should explore the utility of DNA methylation in the upCpGi, particularly the DMR, in diagnosis or prognosis.


Author(s):  
Li Zhang ◽  
Sijuan Tian ◽  
Minyi Zhao ◽  
Ting Yang ◽  
Shimin Quan ◽  
...  

Background: Smad3 is a pivotal intracellular mediator for participating in the activation of multiple immune signal pathway. Objective: The epigenetic regulation mechanism of the positive immune factor Smad3 in cervical cancer remains unknown. Therefore, the epigenetic regulation on Smad3 is investigated in this study. Methods: The methylation status of SMAD3 was detected by Methylation-specific PCR (MS-PCR) and Quantitative Methylation-specific PCR (MS-qPCR) in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT1-Smad3 regulation was elucidated using cervical cancer cell lines containing siRNA or/and overexpression system. Confirmation of the regulation of DNMT1 by SUV39H1 used Chromatin immunoprecipitation-qPCR (ChIP-qPCR). The statistical methods used for comparing samples between groups were paired t tests and one-way ANOVAs. Results: H3K9me3 protein which regulated by SUV39H1 directly interacts with the DNMT1 promoter region to regulate its expression in cervical cancer cells, resulting in the reduce expression of the downstream target gene DNMT1. In addition, DNMT1 mediates the epigenetic modulation of the SMAD3 gene by directly binding to its promoter region. The depletion of DNMT1 effectively restores the expression of Smad3 in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1-DNMT1 was found to correlate with Smad3 expression in accordance with the expression at the cellular level. Notably, the promoter region of SMAD3 was hypermethylated in cervical cancer tissues, and this hypermethylation inhibits the subsequent gene expression. Conclusion: These results indicate that SUV39H1-DNMT1 is a crucial Smad3 regulatory axis in cervical cancer. SUV39H1-DNMT1 axis may provide a potential therapeutic target for the treatment of cervical cancer.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 539 ◽  
Author(s):  
Alexei J. Stuckel ◽  
Wei Zhang ◽  
Xu Zhang ◽  
Shuai Zeng ◽  
Urszula Dougherty ◽  
...  

In colorectal cancer (CRC), upregulation of the C-X-C motif chemokine receptor 4 (CXCR4) is correlated with metastasis and poor prognosis, highlighting the need to further elucidate CXCR4’s regulation in CRC. For the first time, DNA methylation and 5-hydroxymethylcytosine aberrations were investigated to better understand the epigenetic regulation of CXCR4 in CRC. CXCR4 expression levels were measured using qPCR and immunoblotting in normal colon tissues, primary colon cancer tissues and CRC cell lines. Publicly available RNA-seq and methylation data from The Cancer Genome Atlas (TCGA) were extracted from tumors from CRC patients. The DNA methylation status spanning CXCR4 gene was evaluated using combined bisulfite restriction analysis (COBRA). The methylation status in the CXCR4 gene body was analyzed using previously performed nano-hmC-seal data from colon cancers and adjacent normal colonic mucosa. CXCR4 expression levels were significantly increased in tumor stromal cells and in tumor colonocytes, compared to matched cell types from adjacent normal-appearing mucosa. CXCR4 promoter methylation was detected in a minority of colorectal tumors in the TCGA. The CpG island of the CXCR4 promoter showed increased methylation in three of four CRC cell lines. CXCR4 protein expression differences were also notable between microsatellite stable (MSS) and microsatellite instable (MSI) tumor cell lines. While differential methylation was not detected in CXCR4, enrichment of 5-hydroxymethylcytosine (5hmC) in CXCR4 gene bodies in CRC was observed compared to adjacent mucosa.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2951-2951
Author(s):  
Jun Fan ◽  
Asou Norio ◽  
Masao Matsuoka

Abstract DNA methylation plays an important role in the development and aging of mammalian cells, and its dysregulation has been frequently observed in cancer cells. The purpose of this study is to investigate the involvement of aberrant DNA methylation in B chronic lymphocytic leukemia (B-CLL) cells. We compared methylation status of B-CLL cells isolated from patients with that of normal CD19+ cells isolated from health donors by methylated CpG island amplification/representative difference analysis method. 5 hypermethylated and 27 hypomethylated DNA regions were identified in B-CLL sample. Among the 27 hypomethylated regions, 5 located on chromosome 9q34, 3 on 10q25-26 and 4 on 19q13. Methylation status was confirmed by sequencing using sodium bisulfite-treated DNA samples. By comparing DNA samples from same patients at different clinical stages, we found that lower methylation density in these regions is linked with disease progression. Expression of 15 genes surrounding hypomethylated regions was studied by RT-PCR. Expression of laminin beta3 gene and melanotransferrin gene was found to be upregulated in all B-CLL cell lines as well as lymphoma cell lines comparing with normal CD19+ peripheral blood mononuclear cells. B-cell CLL/lymphoma 11b gene showed increased expression in only 2 B-CLL cell lines. For other genes, no transcriptional change was found regardless of changed DNA methylation. This study showed the predominance of DNA hypomethylation in B-CLL cells compared with hypermethylation. Hypomethylated regions clustered in a limited number of chromosomes and methylation density appeared to be inversely correlated with disease progress. Figure Figure


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2127-2127
Author(s):  
Shao-qing Kuang ◽  
Weigang Tong ◽  
Hui Yang ◽  
Mathew K. Lee ◽  
Zhi-Hong Fang ◽  
...  

Abstract Aberrant DNA methylation is a common molecular feature of both pediatric and adult ALL. Specific methylation patterns predict for poor prognosis (Shen et al Blood 2004), and reactivation of epigenetically inactivated molecular pathways results in induction of leukemia cell death (Kuang et al. Oncogene 2007). Until now most studies of methylation in ALL have been based on arbitrary gene selection methods. To overcome this limitation and to study hundreds of promoter CpG islands simultaneously, we have developed a method that combines MCA (Methylated CpG Island Amplification) with either RDA (Representational Difference Analysis) or the Agilent Promoter Microarray platform. With these methods differentially methylated DNA treated with bisulfite is generated after mixing tester DNA (in our case DNA from de novo refractory Ph negative and MLL negative ALL patients) with driver DNA (normal B cell controls) and using specific restriction enzymes and several rounds of PCR. DNA fragments thus generated are either cloned (RDA) or labeled and spotted on the Agilent Array. Using this technology, that can potentially interrogate up to 17K promoters, we have identified 932 promoters targets of aberrant DNA methylation in poor risk ALL from patients that cannot be currently identified by standard molecular methods (Ph and MLL negative). The genes associated with these promoters are distributed through the human genome but an overrepresentation of methylated promoters located in chromosomes 3, 9, 11 and 19 was detected. Using molecular pathway clustering analysis, 404 of these genes are grouped together in 29 specific functional pathways. We have validated the methylation of 31 of these 923 genes by bisulfite pyrosequencing. Of these, 27 (87%) were confirmed to be hypermethylated in 23 human leukemia cell lines but not in normal controls (N=15). Methylation status analysis of these 27 genes allowed for the segregation of T cell versus B cell leukemia cell lines. Fifteen of these genes (GIPC2, RSPO1, MAGI1, CAST1, ADCY5, HSPA4L, OCLN, EFNA5, MSX2, GFPT2, GNA14, SALL1, MYO5B, ZNF382 and MN1) were also frequently hypermethylated in primary ALL samples. Expression analysis of 6 of these genes (GIPC2, MAGI1, ADCY5, HSPA4L, OCLN and GNA14) in leukemia cell lines further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with 5′-aza-2′-deoxycytidine and trichostatin A resulted in gene re-expression, further confirming the role of DNA methylation in their silencing. In summary, we have identified in excess of 900 targets of aberrant DNA methylation in ALL. The study of the epigenetically suppressed pathways represented by these genes should allow us to further understand the molecular pathogenesis of ALL and develop new prognostic biomarkers for patients with Ph and MLL negative disease.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1798-1798
Author(s):  
Brian A Walker ◽  
Paola E. Leone ◽  
Nicholas J Dickens ◽  
Kevin D Boyd ◽  
David Gonzalez ◽  
...  

Abstract Abstract 1798 Poster Board I-824 Histone modifications are known to mediate transcriptional regulation through changes in chromatin condensation and as such can lead to aberrant transcriptional patterns resulting in malignant transformation. Modulation of chromatin structure via histone modification is becoming recognised as an important pathogenic mechanism in myeloma and has been suggested by the over-expression of MMSET, a histone methyltransferase, by the t(4;14) chromosomal rearrangement. More recently inactivation of UTX, a histone demethylase, has also been suggested to have a role in myeloma pathogenesis and both UTX and MMSET are mediators of transcriptional repression. UTX is inactivated in a number of different cancer cell lines but importantly, mutations and deletions have been detected in myeloma cell lines and we wished to follow up on this observation in uniformly treated clinical cases. UTX is a large gene found on the X chromosome covering 240 kb of genomic DNA and consists of 29 exons encoding a protein with both JmjC-domains and tricopeptide repeats responsible for histone demethylation and polycomb protein interactions. Inactivation of UTX occurs through deletions of individual exons through to large whole gene deletions as well as by mutations scattered throughout the 29 exons. A further mechanism of UTX inactivation which has not been looked for to date is via DNA methylation of the CpG island upstream of the transcriptional start site. We set out to determine the status of UTX in our dataset which includes expression, mapping, and methylation array data from presenting myeloma samples entered into the MRC Myeloma IX clinical trial. The gene expression of UTX was measured on 272 samples using Affymetrix U133 Plus 2.0 arrays and showed that 80% of samples do not express UTX transcripts but using expression quartile analysis we could not detect an effect on overall survival. The mechanism underlying the abrogation of expression was investigated further using the Affymetrix 500K SNP mapping array on a subset of 114 samples to detect copy number alterations. UTX was hemizygously deleted in 21 (42%) female samples and was completely deleted in 1 male sample, at the resolution of the arrays. In order to determine if individual exons were deleted, at a resolution below that detectable by mapping arrays, we performed quantitative PCR coupled with high resolution melting (HRM) analysis using the Rotor-gene Q real-time cycler (Qiagen). Exons were amplified, over 40 cycles, to obtain products of ∼200 bp using LC Green Plus mastermix (Idaho Technologies) in a 10 μl reaction on the Rotor-gene Q with a final HRM step from 72-95 °C with increments of 0.1 °C. Amplification plots combined with the HRM step allows us to identify both homozygous deletions and mutations within the exons. We screened all 114 samples for micro-deletions and mutations and found homozygous deletions in ∼7% of samples and identified a significant proportion of mutations using the HRM method which accounted for a total of ∼10% of gene inactivation. In order to determine if methylation could be responsible for inactivation of the remaining allele we used the Illumina Infinium humanmethylation27 array to study the methylation status at the UTX locus. This array interrogates 27,578 highly informative CpG sites per sample at the single-nucleotide resolution using bisulfite converted DNA. The results of this analysis are presented as an average beta-score where 1.0 is fully methylated and 0 is fully unmethylated. Samples were analyzed using Illumina GenomeStudio and the custom differential methylation algorithm. In samples with a diploid copy number of UTX the methylation signals covered 2 ranges: hemi-methylated (0.35-0.55, n=7) and hyper-methylated (0.73-0.89, n=14). In samples with 1 copy of UTX, which includes all males, there were 3 ranges: hypomethylated (0.08-0.21, n=5), hemi-methylated (0.35-0.51, n=3), and hypermethylated (0.66-0.88, n=48). All of the hypomethylated samples with a single copy of UTX were male, and at least 1 of these samples contained an inactivating exonic deletion resulting in complete loss of function. These data indicate that methylation of the residual allele contributes significantly to the inactivation of UTX along with interstitial deletions and mutations. We will go on to present data on the interaction of UTX with variation at the UTY locus and how this modulates behaviour of the myeloma clone. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document