scholarly journals Study On Spectral Characters-Chlorophyll Inversion Model of Sabina Vulgaris in Mu Us Sandy Land

Author(s):  
Ning Wang ◽  
Guang Yang ◽  
Xueying Han ◽  
Guangpu Jia ◽  
Feng Liu ◽  
...  

Abstract Sabina vulgaris is a group tree species in Mu Us Sandy Land. Understanding the growth status of Sabina vulgaris has guiding value for vegetation change monitoring. Chlorophyll is an important indicator to characterize the growth status of plants, and its content changes are important for analyzing the physiological growth status of plants and guiding the precise planting of plants. In this paper, the spectral reflectance and chlorophyll content of Sabina vulgaris were measured by SVC HR-1024 portable ground feature spectrometer and SPAD502 chlorophyll instrument, and the relationship between ground feature spectral characteristics and chlorophyll content of Sabina vulgaris was studied. The results show that there is a correlation between the vegetation index and chlorophyll, the effect of NDVI is the best, the bands with the highest correlation are the combined bands of 470nm-500nm, 610nm-680nm, and 740nm-840nm, and the wavelengths with the highest correlation are (660,790); Vegetation index, red-edge parameters, and chlorophyll have a certain correlation. The fitting effect of the model established by vegetation index is better than that established by red-edge parameters, and the highest R2 is 0.97; Among the three modeling methods, the model fitting effect of partial least squares is the best, R2 is > 0.91, and the disadvantage is that the processing process is complex; The processing method of the univariate linear regression model is the simplest, but the disadvantage is that the accuracy of the model is unstable, R2 is between 0.1-0.9, so the multivariate linear regression model is the most suitable of the three methods(R2>0.8).

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1221
Author(s):  
Yuki Hamada ◽  
Colleen R. Zumpf ◽  
Jules F. Cacho ◽  
DoKyoung Lee ◽  
Cheng-Hsien Lin ◽  
...  

A sustainable bioeconomy would require growing high-yielding bioenergy crops on marginal agricultural areas with minimal inputs. To determine the cost competitiveness and environmental sustainability of such production systems, reliably estimating biomass yield is critical. However, because marginal areas are often small and spread across the landscape, yield estimation using traditional approaches is costly and time-consuming. This paper demonstrates the (1) initial investigation of optical remote sensing for predicting perennial bioenergy grass yields at harvest using a linear regression model with the green normalized difference vegetation index (GNDVI) derived from Sentinel-2 imagery and (2) evaluation of the model’s performance using data from five U.S. Midwest field sites. The linear regression model using midsummer GNDVI predicted yields at harvest with R2 as high as 0.879 and a mean absolute error and root mean squared error as low as 0.539 Mg/ha and 0.616 Mg/ha, respectively, except for the establishment year. Perennial bioenergy grass yields may be predicted 152 days before the harvest date on average, except for the establishment year. The green spectral band showed a greater contribution for predicting yields than the red band, which is indicative of increased chlorophyll content during the early growing season. Although additional testing is warranted, this study showed a great promise for a remote sensing approach for forecasting perennial bioenergy grass yields to support critical economic and logistical decisions of bioeconomy stakeholders.


Author(s):  
Aliva Bera ◽  
D.P. Satapathy

In this paper, the linear regression model using ANN and the linear regression model using MS Excel were developed to estimate the physico-chemical concentrations in groundwater using pH, EC, TDS, TH, HCO3 as input parameters and Ca, Mg and K as output parameters. A comparison was made which indicated that ANN model had the better ability to estimate the physic-chemical concentrations in groundwater. An analytical survey along with simulation based tests for finding the climatic change and its effect on agriculture and water bodies in Angul-Talcher area is done. The various seasonal parameters such as pH, BOD, COD, TDS,TSS along with heavy elements like Pb, Cd, Zn, Cu, Fe, Mn concentration in water resources has been analyzed. For past 30 years rainfall data has been analyzed and water quality index values has been studied to find normal and abnormal quality of water resources and matlab based simulation has been done for performance analysis. All results has been analyzed and it is found that the condition is stable. 


2020 ◽  
Vol 38 (8A) ◽  
pp. 1143-1153
Author(s):  
Yousif K. Shounia ◽  
Tahseen F. Abbas ◽  
Raed R. Shwaish

This research presents a model for prediction surface roughness in terms of process parameters in turning aluminum alloy 1200. The geometry to be machined has four rotational features: straight, taper, convex and concave, while a design of experiments was created through the Taguchi L25 orthogonal array experiments in minitab17 three factors with five Levels depth of cut (0.04, 0.06, 0.08, 0.10 and 0.12) mm, spindle speed (1200, 1400, 1600, 1800 and 2000) r.p.m and feed rate (60, 70, 80, 90 and 100) mm/min. A multiple non-linear regression model has been used which is a set of statistical extrapolation processes to estimate the relationships input variables and output which the surface roughness which prediction outside the range of the data. According to the non-linear regression model, the optimum surface roughness can be obtained at 1800 rpm of spindle speed, feed-rate of 80 mm/min and depth of cut 0.04 mm then the best surface roughness comes out to be 0.04 μm at tapper feature at depth of cut 0.01 mm and same spindle speed and feed rate pervious which gives the error of 3.23% at evolution equation.


Author(s):  
Pundra Chandra Shaker Reddy ◽  
Alladi Sureshbabu

Aims & Background: India is a country which has exemplary climate circumstances comprising of different seasons and topographical conditions like high temperatures, cold atmosphere, and drought, heavy rainfall seasonal wise. These utmost varieties in climate make us exact weather prediction is a challenging task. Majority people of the country depend on agriculture. Farmers require climate information to decide the planting. Weather prediction turns into an orientation in farming sector to deciding the start of the planting season and furthermore quality and amount of their harvesting. One of the variables are influencing agriculture is rainfall. Objectives & Methods: The main goal of this project is early and proper rainfall forecasting, that helpful to people who live in regions which are inclined natural calamities such as floods and it helps agriculturists for decision making in their crop and water management using big data analytics which produces high in terms of profit and production for farmers. In this project, we proposed an advanced automated framework called Enhanced Multiple Linear Regression Model (EMLRM) with MapReduce algorithm and Hadoop file system. We used climate data from IMD (Indian Metrological Department, Hyderabad) in 1901 to 2002 period. Results: Our experimental outcomes demonstrate that the proposed model forecasting the rainfall with better accuracy compared with other existing models. Conclusion: The results of the analysis will help the farmers to adopt effective modeling approach by anticipating long-term seasonal rainfall.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 993
Author(s):  
Su Lee Kuek ◽  
Azmil Haizam Ahmad Tarmizi ◽  
Raznim Arni Abd Razak ◽  
Selamat Jinap ◽  
Maimunah Sanny

This study aims to evaluate the influence of Vitamin A and E homologues toward acrylamide in equimolar asparagine-glucose model system. Vitamin A homologue as β-carotene (BC) and five Vitamin E homologues, i.e., α-tocopherol (AT), δ-tocopherol (DT), α-tocotrienol (ATT), γ-tocotrienol (GTT), and δ-tocotrienol (DTT), were tested at different concentrations (1 and 10 µmol) and subjected to heating at 160 °C for 20 min before acrylamide quantification. At lower concentrations (1 µmol; 431, 403, 411 ppm, respectively), AT, DT, and GTT significantly increase acrylamide. Except for DT, enhancing concentration to 10 µmol (5370, 4310, 4250, 3970, and 4110 ppm, respectively) caused significant acrylamide formation. From linear regression model, acrylamide concentration demonstrated significant depreciation over concentration increase in AT (Beta = −83.0, R2 = 0.652, p ≤ 0.05) and DT (Beta = −71.6, R2 = 0.930, p ≤ 0.05). This study indicates that different Vitamin A and E homologue concentrations could determine their functionality either as antioxidants or pro-oxidants.


Sign in / Sign up

Export Citation Format

Share Document