Comprehensive Analysis to Identify the Vasohibin1 (VASH1) Emerges as a Novel Prognosis Biomarker in High-Risk Low-Grade Glioma

Author(s):  
Yirizhati aili ◽  
Aierpati maimaiti ◽  
Nuersimanguli maimaitiming ◽  
Hu qin ◽  
Wenyu Ji ◽  
...  

Abstract Background: Gliomas are complex and heterogeneous central nervous system tumors, with Low-grade Glioma (LGG)as the most common pathological type. But studies on the predictive effect of a single gene on LGG are limited. VASH1 is an epigenetic regulator with various tumors. However, the role of VASH1 in LGG remains confused. This is the first research focusing on the prognostic value and underlying mechanism of VASH1 in LGG.Methods: In this research, three independent datasets were used for mRNA-related analysis: two datasets from the TCGA and CGGA (CGGA-mRNA seq 693 and CGGA-mRNA seq 325). We analyzed and screened the clinical significance of VASH1 in overall survival and DSS of various cancers. TIMER and CIBERSORT algorithms were employed to investigate the effect of VASH1 on the tumor microenvironment. GSEA along with GO and KEGG enrichment analyses were conducted to uncover the biological functions of VASH1. In addition, a LGG patient cohort (The First Affiliated Hospital of Xinjiang Medical University) was utilized for analysis of cell infiltration by immunohistochemical, Western-blot, and qPCR; then to verify its function in regulating LGG progression in vitro.Result: In this study, the results of generalized cancer survival analysis showed that abnormal VASH1 expression was associated with poor prognosis (overall survival (OS) and disease-specific survival (DSS) in patients with adrenal cortical carcinoma (ACC), low-grade glioma (LGG), pancreatic adenocarcinoma (PAAD) and hepatocellular carcinoma (LIHC) (P<0.05). Meanwhile, VASH1 was correlated with the immune invasion, immune score, immune checkpoint, and TBM of the above four tumors, and the correlation between VASH1 expression and LGG was the strongest. In addition, we found that VASH1-mediated changes in gene expression are closely related to cell cycle, P53, Notch, and TGF-β signaling pathways. In addition, immunostaining and RT-PCR were performed on our cohort, and the results showed that VASH1 expression was significantly higher than that of para-cancer tissues (P<0.05). Kaplan-Meier survival analysis results showed that VASH1 was associated with shorter survival (OS) and shorter DFS in high-risk LGG patients (P<0.05). Multivariate Cox analysis showed that high VASH1 expression was an independent risk factor for the prognosis of LGG patients (HR=1.65, P=0.02). Finally, a high level of VASH1 was found in U-251 cell lines by in vitro cell experiments, and the migration and invasion ability of U-251 cells were significantly improved after knockdown of VASH1 (P<0.01), which further confirmed the function of VASH1.Conclusion: In conclusion, this study preliminarily indicates that VASH1 can be used as a prognostic biomarker and potential therapeutic target for LGG, and has important clinical application value.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shuai Liu ◽  
Yanwei Liu ◽  
Guanzhang Li ◽  
Jin Feng ◽  
Li Chen ◽  
...  

Abstract Background As molecular advances have deepened the knowledge on low-grade glioma (LGG), we investigated the effect of higher radiation dose on the survival of IDH-wildtype (IDHwt) LGG. Methods In the current study, 52 IDHwt LGG patients who received radiotherapy were enrolled from the Chinese Glioma Genome Atlas dataset. Radiation doses > 54 Gy were defined as high-dose, whereas doses ≤ 54 Gy were defined as low-dose. We performed univariate and multivariate survival analyses to examine the prognostic role of high-dose radiotherapy. Results In total, the radiation dose ranged from 48.6 Gy to 61.2 Gy, with a median of 55.8 Gy, and 31 patients were grouped into high-dose radiation. Univariate survival analysis indicated that high-dose radiotherapy (p = 0.015), tumors located in the frontal lobe (p = 0.009), and pathology of astrocytoma (p = 0.037) were significantly prognostic factors for overall survival. In multivariate survival analysis, high-dose radiotherapy (p = 0.028) and tumors located in the frontal lobe (p = 0.016) were independently associated with better overall survival. Conclusions In conclusion, high-dose radiotherapy independently improved the survival of IDHwt LGG. This can guide treatments for glioma with known molecular characteristics.


2021 ◽  
Author(s):  
Shuai Liu ◽  
Yanwei Liu ◽  
Guanzhang Li ◽  
Jin Feng ◽  
Li Chen ◽  
...  

Abstract PurposeAs molecular advances have deepened the knowledge on low-grade glioma (LGG), we investigated the effect of higher radiation dose on the survival of IDH-wildtype (IDHwt) LGG.MethodsIn the current study, 52 IDHwt LGG patients who received radiotherapy were enrolled from the Chinese Glioma Genome Atlas dataset. Radiation doses > 54 Gy were defined as high-dose, whereas doses ≤ 54 Gy were defined as low-dose. We performed univariate and multivariate survival analyses to examine the prognostic role of high-dose radiotherapy.ResultsIn total, the radiation dose ranged from 48.6 Gy to 61.2 Gy, with a median of 55.8 Gy, and 31 patients were grouped into high-dose radiation. Univariate survival analysis indicated that high-dose radiotherapy (p = 0.015), tumors located in the frontal lobe (p = 0.009), and pathology of astrocytoma (p = 0.037) were significantly prognostic factors for overall survival. In multivariate survival analysis, high-dose radiotherapy (p = 0.028) and tumors located in the frontal lobe (p = 0.016) were independently associated with better overall survival.ConclusionIn conclusion, high-dose radiotherapy independently improved the survival of IDHwt LGG. This can guide treatments for glioma with known molecular characteristics.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Lifeng Feng ◽  
Miaoqin Chen ◽  
Yiling Li ◽  
Muchun Li ◽  
Shiman Hu ◽  
...  

Abstractp62/SQSTM1 is frequently up-regulated in many cancers including hepatocellular carcinoma. Highly expressed p62 promotes hepato-carcinogenesis by activating many signaling pathways including Nrf2, mTORC1, and NFκB signaling. However, the underlying mechanism for p62 up-regulation in hepatocellular carcinoma remains largely unclear. Herein, we confirmed that p62 was up-regulated in hepatocellular carcinoma and its higher expression was associated with shorter overall survival in patients. The knockdown of p62 in hepatocellular carcinoma cells decreased cell growth in vitro and in vivo. Intriguingly, p62 protein stability could be reduced by its acetylation at lysine 295, which was regulated by deacetylase Sirt1 and acetyltransferase GCN5. Acetylated p62 increased its association with the E3 ligase Keap1, which facilitated its poly-ubiquitination-dependent proteasomal degradation. Moreover, Sirt1 was up-regulated to deacetylate and stabilize p62 in hepatocellular carcinoma. Additionally, Hepatocyte Sirt1 conditional knockout mice developed much fewer liver tumors after Diethynitrosamine treatment, which could be reversed by the re-introduction of exogenous p62. Taken together, Sirt1 deacetylates p62 at lysine 295 to disturb Keap1-mediated p62 poly-ubiquitination, thus up-regulating p62 expression to promote hepato-carcinogenesis. Therefore, targeting Sirt1 or p62 is a reasonable strategy for the treatment of hepatocellular carcinoma.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii32-iii32
Author(s):  
H Noor ◽  
R Rapkins ◽  
K McDonald

Abstract BACKGROUND Tumour Protein 53 (TP53) is a tumour suppressor gene that is mutated in at least 50% of human malignancies. The prevalence of TP53 mutation is much higher in astrocytomas with reports of up to 75% TP53 mutant cases. Rare cases of TP53 mutation also exist in oligodendroglial tumours (10–13%). P53 pathway is therefore an important factor in low-grade glioma tumorigenesis. Although the prognostic impact of TP53 mutations has been studied previously, no concrete concordance were reached between the studies. In this study, we investigated the prognostic effects of TP53 mutation in astrocytoma and oligodendroglioma. MATERIAL AND METHODS A cohort of 65 matched primary and recurrent fresh frozen tumours were sequenced to identify hotspot exons of TP53 mutation. Exons 1 to 10 were sequenced and pathogenic mutations were mostly predominant between Exons 4 and 8. The cohort was further expanded with 78 low grade glioma fresh frozen tissues and hotspot exons were sequenced. Selecting only the primary tumour from 65 matched tumours, a total of 50 Astrocytoma cases and 51 oligodendroglioma cases were analysed for prognostic effects of TP53. Only pathogenic TP53 mutations confirmed through COSMIC and NCBI databases were included in the over survival and progression-free survival analysis. RESULTS 62% (31/50) of astrocytomas and 16% (8/51) of oligodendrogliomas harboured pathogenic TP53 mutations. Pathogenic hotspot mutations in codon 273 (c.817 C>T and c.818 G>A) was prevalent in astrocytoma with 58% (18/31) of tumours with these mutations. TP53 mutation status was maintained between primary and recurrent tumours in 93% of cases. In astrocytoma, overall survival of TP53 mutant patients was longer compared to TP53 wild-type patients (p<0.01) but was not significant after adjusting for age, gender, grade and IDH1 mutation status. In contrast, astrocytoma patients with specific TP53 mutation in codon 273 showed significantly better survival compared to other TP53 mutant and TP53 wild-type patients combined (p<0.01) in our multivariate analysis. Time to first recurrence (progression-free survival) of TP53 mutant patients was significantly longer than TP53 wild-type patients (p<0.01) after adjustments were made, while TP53 mutation in codon 273 was not prognostic for progression-free survival. In oligodendroglioma patients, TP53 mutations did not significantly affect overall survival and progression-free survival. CONCLUSION In agreement with others, TP53 mutation is more prevalent in Astrocytoma and mutations in codon 273 are significantly associated with longer survival.


2021 ◽  
Vol 11 (8) ◽  
pp. 1466-1476
Author(s):  
Xuli Wang ◽  
Aiping Wang

Circular RNAs (circRNAs) have been reported to participate in the molecular mechanism of human cancers. This study investigates the role of circRNA hsa_circ_0000515 in gastric cancer (GC) cells and the underlying mechanism associated with microRNA-615-5p (miR-615-5p). qRT-PCR analysis showed the upregulation of hsa_circ_0000515 and downregulation of miR-615-5p in GC cell lines. Loss-of-function experiments indicated that suppression of hsa_circ_0000515 inhibited cell proliferation, migration, and invasion. Dual-luciferase reporter assay highlighted that hsa_circ_0000515 was able to act as a ceRNA of miR-615-5p. Furthermore, hsa_circ_0000515 could interact with splicing factors and bind miR-615-5p to regulate progression of GC cells. Deficiency of miR-615-5p reverses the inhibitory roles of si-hsa_circ_0000515 on the proliferation, migration, and invasion of GC cells. The findings highlighted the promising uses of hsa_circ_0000515 as a likely novel target for gastric cancer treatment.


Cancer ◽  
2018 ◽  
Vol 125 (2) ◽  
pp. 174-176 ◽  
Author(s):  
Marjolein Geurts ◽  
Martin J. van den Bent
Keyword(s):  

2021 ◽  
Author(s):  
Feng Ying Zhang ◽  
Xia Li ◽  
Ting Ting Huang ◽  
Mei Ling Xiang ◽  
Lin Lin Sun ◽  
...  

Abstract Background Long intergenic non-coding RNA 00839 (LINC00839) has been verified as a cancer-promoting gene in malignancies. However, the significance of LINC00839 in nasopharyngeal carcinoma (NPC) has yet to be elaborated, as well as its underlying mechanism.Methods LINC00839 and miR-454-3p relative expression levels in NPC cells were examined by qRT-PCR. The growth of cells was examined by CCK-8 and colony formation assays. Cell migration and invasion were examined by wound healing and Transwell experiment, respectively. The binding sequence of LINC00839 and miR-454-3p was confirmed by the luciferase reporter gene experiment. The regulatory function of LINC00839 and miR-454-3p on c-Met was investigated by western blot.Results Here, we revealed that LINC00839 was elevated in NPC. Both LINC00839 knockdown and upregulation of miR-454-3p suppressed NPC cells proliferation, invasive capacity and EMT in vitro. Besides, LINC00839 was validated as a miR-454-3p “sponge”, and upregulation of LINC00839 could reverse miR-454-3p-mediated functions in NPC C666-1 and SUNE-1 cells. Furthermore, c-Met was determined to be targeted by miR-454-3p. Notably, c-Met was downregulated by LINC00839 knockdown through sponging miR-454-3p. In vivo, LINC00839 knockdown resulted in a slower tumor growth.Conclusions Altogether, knockdown of LINC00839 inhibits the aggressive properties of NPC cells via sponging miR-454-3p and regulating c-Met.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Zhao ◽  
Jiaxuan Zou ◽  
Ziwei Wang ◽  
Ge Li ◽  
Yi Lei

Background. Gastric cancer (GC) is believed to be one of the most common digestive tract malignant tumors. The prognosis of GC remains poor due to its high malignancy, high incidence of metastasis and relapse, and lack of effective treatment. The constant progress in bioinformatics and molecular biology techniques has given rise to the discovery of biomarkers with clinical value to predict the GC patients’ prognosis. However, the use of a single gene biomarker can hardly achieve the satisfactory specificity and sensitivity. Therefore, it is urgent to identify novel genetic markers to forecast the prognosis of patients with GC. Materials and Methods. In our research, data mining was applied to perform expression profile analysis of mRNAs in the 443 GC patients from The Cancer Genome Atlas (TCGA) cohort. Genes associated with the overall survival (OS) of GC were identified using univariate analysis. The prognostic predictive value of the risk factors was determined using the Kaplan-Meier survival analysis and multivariate analysis. The risk scoring system was built in TCGA dataset and validated in an independent Gene Expression Omnibus (GEO) dataset comprising 300 GC patients. Based on the median of the risk score, GC patients were grouped into high-risk and low-risk groups. Results. We identified four genes (GMPPA, GPC3, NUP50, and VCAN) that were significantly correlated with GC patients’ OS. The high-risk group showed poor prognosis, indicating that the risk score was an effective predictor for the prognosis of GC patients. Conclusion. The signature consisting of four glycolysis-related genes could be used to forecast the GC patients’ prognosis.


Sign in / Sign up

Export Citation Format

Share Document