scholarly journals A Novel Live Imaging-Based Assay for Visualising Species-Specific Interactions in Gametic Adhesion Molecules

Author(s):  
Kohdai P. Nakajima ◽  
Clari Valansi ◽  
Daisuke Kurihara ◽  
Narie Sasaki ◽  
Benjamin Podbilewicz ◽  
...  

Abstract Successful gametic fusion requires species-specific membrane adhesion. However, the interaction of adhesion molecules in gametes is difficult to study in real time through low-throughput microscopic observation. Therefore, we developed a novel live imaging-based adhesion molecule (LIAM) assay to study gametic adhesion molecule interactions in cultured cells. First, we modified a fusion assay previously established for fusogens introduced into cultured cells, and confirmed that our live imaging technique could visualise cell-to-cell fusion in the modified fusion assay. Next, instead of fusogen, we introduced adhesion molecules including a mammalian gametic adhesion molecule pair, IZUMO and JUNO, and detected their temporal accumulation at the contact interfaces of adjacent cells. Accumulated IZUMO or JUNO was translocated to the opposite cells; the mutation in amino acids required for their interaction impaired accumulation and translocation. By using the novel LIAM assay, we investigated the species specificity of IZUMO and JUNO of mouse, human, hamster, and pig in all combinations. IZUMO and JUNO accumulation and translocation were observed in conspecific, and some interspecific, combinations, suggesting potentially interchangeable combinations of IZUMO and JUNO from different species.

Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4691-4699 ◽  
Author(s):  
Paul H. Reinhardt ◽  
Paul Kubes

Abstract The objective of this study was to determine if vascular cell adhesion molecule (VCAM-1), E-selectin, and P-selectin could selectively recruit leukocyte subpopulations, and whether this was affected by shear force or adhesion molecule concentration. Cover slips coated with purified adhesion molecules were incorporated into laminar flow chambers. Whole human blood was perfused for 5 minutes over these cover slips at relative shear forces of 2 to 40 dynes/cm2. Chasing the whole blood with buffer permitted visualization of leukocyte-substratum interactions. Leukocytes were observed to roll on and adhere to VCAM-1 at shears between 2 and 15 dynes/cm2. As assessed by cover slip staining, the majority of these cells were lymphocytes, but eosinophils, monocytes, and, surprisingly, neutrophils were also recruited, events inhibitable by anti–4-integrin antibody (HP1/2). Neutrophils were effectively recruited onto the selectins, with interactions occurring at shears as high as 30 and 40 dynes/cm2 for E- and P-selectin respectively. Eosinophils had high affinity for P- but not E-selectin. Mononuclear cells did not have high affinity for either selectin, but interacted avidly with VCAM-1. Antibodies against P-selectin (G1) and E-selectin (ES-1) completely blocked interactions on these substrates. Reducing the concentration of adhesion molecules did not appreciably change recruitment patterns except for VCAM-1, where neutrophils were no longer recruited. The novel use of whole blood in flow chambers shows a partial selectivity of selectins and VCAM-1 for certain subpopulations of leukocytes under varying physiologic shear conditions.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4691-4699 ◽  
Author(s):  
Paul H. Reinhardt ◽  
Paul Kubes

The objective of this study was to determine if vascular cell adhesion molecule (VCAM-1), E-selectin, and P-selectin could selectively recruit leukocyte subpopulations, and whether this was affected by shear force or adhesion molecule concentration. Cover slips coated with purified adhesion molecules were incorporated into laminar flow chambers. Whole human blood was perfused for 5 minutes over these cover slips at relative shear forces of 2 to 40 dynes/cm2. Chasing the whole blood with buffer permitted visualization of leukocyte-substratum interactions. Leukocytes were observed to roll on and adhere to VCAM-1 at shears between 2 and 15 dynes/cm2. As assessed by cover slip staining, the majority of these cells were lymphocytes, but eosinophils, monocytes, and, surprisingly, neutrophils were also recruited, events inhibitable by anti–4-integrin antibody (HP1/2). Neutrophils were effectively recruited onto the selectins, with interactions occurring at shears as high as 30 and 40 dynes/cm2 for E- and P-selectin respectively. Eosinophils had high affinity for P- but not E-selectin. Mononuclear cells did not have high affinity for either selectin, but interacted avidly with VCAM-1. Antibodies against P-selectin (G1) and E-selectin (ES-1) completely blocked interactions on these substrates. Reducing the concentration of adhesion molecules did not appreciably change recruitment patterns except for VCAM-1, where neutrophils were no longer recruited. The novel use of whole blood in flow chambers shows a partial selectivity of selectins and VCAM-1 for certain subpopulations of leukocytes under varying physiologic shear conditions.


1987 ◽  
Vol 104 (6) ◽  
pp. 1597-1602 ◽  
Author(s):  
A Kücherer ◽  
A Faissner ◽  
M Schachner

The monoclonal L3 antibody reacts with an N-glycosidically linked carbohydrate structure on at least nine glycoproteins of adult mouse brain. Three out of the L3 epitope-carrying glycoproteins could be identified as the neural cell adhesion molecules L1 and myelin-associated glycoprotein, and the novel adhesion molecule on glia. Expression of the L3 carbohydrate epitope is regulated independently of the protein backbone of these three glycoproteins. Based on the observation that out of three functionally characterized L3 epitope-carrying glycoproteins three fulfill the operational definition of an adhesion molecule, we would like to suggest that they form a new family of adhesion molecules that is distinct from the L2/HNK-1 carbohydrate epitope family of neural cell adhesion molecules. Interestingly, some members in each family appear to be unique to one family while other members belong to the two families.


Author(s):  
Heriansyah T ◽  
Hanifa H ◽  
Andarini S ◽  
Wihastuti Titin Andri

Objective: Hyperglycemia and hyperlipidemia in diabetes mellitus (DM) can lead an atherosclerosis. The increase of low-density lipoprotein level in DM and atherosclerosis is correlated with lipoprotein-associated phospholipase A2 (Lp-PLA2). Lp-PLA2 is an enzyme that produces lysophosphatidylcholine (LysoPC) and oxidized nonesterified fatty acids. LysoPC regulated inflammation mediators, include cytokines, adhesion molecules (such as vascular cell adhesion molecule-1 [VCAM-1] and intercellular adhesion molecules-1 [ICAM-1]), and monocyte chemoattractant protein-1 (MCP-1) chemotactic. Darapladib is known as a Lp-PLA2 specific inhibitor. It is also considered to be an atherosclerosis treatment. The aim of this study is to know darapladib effect on VCAM-1 and ICAM-1 aorta expression in early stages of atherosclerosis using Sprague-Dawley Type 2 DM (T2DM) model.Methods: About 30 Spraque-Dawley rats are divided into three main groups: Normal, T2DM, and T2DM with darapladib administration group. Each group consists of 2 serials treatment time: 8 and 16 weeks treatment group. Fasting blood glucose, resistance insulin, and lipid profile were measured and analyzed to ensure T2DM model. VCAM-1 and ICAM-1 expression were measured using double staining immunofluorescence. Each data were analyzed using one-way ANOVA.Results: There is a significant difference in VCAM-1 expression in T2DM group (8 and 16 weeks), with p=0.011 and 0.034 (p<0.05), respectively. Mean while, a significant difference for ICAM-1 only showed in 8 weeks T2DM group with p=0.03 (p<0.05). Moreover, there is a decreasing trend in 16 weeks T2DM group.Conclusion: Our results showed that darapladib can decrease VCAM-1 and ICAM-1 aorta expression in early stages of atherosclerosis using Sprague- Dawley T2DM model. This showed another evidence of darapladib as atherosclerosis treatment.


Author(s):  
Renata Calciolari Rossi ◽  
Raquel Anonni ◽  
Diogenes Seraphim Ferreira ◽  
Luiz Fernando Ferraz da Silva ◽  
Thais Mauad

Abstract Background There is interest in better understanding vessel pathology in asthma, given the findings of loss of peripheral vasculature associated with disease severity by imaging and altered markers of endothelial activation. To date, vascular changes in asthma have been described mainly at the submucosal capillary level of the bronchial microcirculation, with sparse information available on the pathology of bronchial and pulmonary arteries. The aim of this study was to describe structural and endothelial activation markers in bronchial arteries (BAs) and pulmonary arteries (PAs) of asthma patients who died during a fatal asthma attack. Methods Autopsy lung tissue was obtained from 21 smoking and non-smoking patients who died of an asthma attack and nine non-smoking control patients. Verhoeff–Masson trichrome staining was used to analyse the structure of arteries. Using immuno-histochemistry and image analyses, we quantified extracellular matrix (ECM) components (collagen I, collagen III, versican, tenascin, fibronectin, elastic fibres), adhesion molecules [vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1)] and markers of vascular tone/dysfunction [endothelin-1 (ET-1) and angiotensin II type 2 receptor (AT2)] in PAs and BAs. Results There were no significant differences in ECM components, ICAM-1, ET-1 or AT2 between asthma patients and controls. Smoking asthma patients presented with decreased content of collagen III in both BA (p = 0.046) and PA (p = 0.010) walls compared to non-smoking asthma patients. Asthma patients had increased VCAM-1 content in the BA wall (p = 0.026) but not in the PA wall. Conclusion Our data suggest that the mechanisms linking asthma and arterial functional abnormalities might involve systemic rather than local mediators. Loss of collagen III in the PA was observed in smoking asthma patients, and this was compatible with the degradative environment induced by cigarette smoking. Our data also reinforce the idea that the mechanisms of leukocyte efflux via adhesion molecules differ between bronchial and pulmonary circulation, which might be relevant to understanding and treating the distal lung in asthma.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2413-2419 ◽  
Author(s):  
José L. Alonso-Lebrero ◽  
Juan M. Serrador ◽  
Carmen Domı́nguez-Jiménez ◽  
Olga Barreiro ◽  
Alfonso Luque ◽  
...  

Abstract In response to the chemoattractants interleukin 8, C5a,N-formyl-methionyl-leucyl-phenylalanine, and interleukin 15, adhesion molecules P-selectin glycoprotein ligand 1 (PSGL-1), intercellular adhesion molecule 3 (ICAM-3), CD43, and CD44 are redistributed to a newly formed uropod in human neutrophils. The adhesion molecules PSGL-1 and ICAM-3 were found to colocalize with the cytoskeletal protein moesin in the uropod of stimulated neutrophils. Interaction of PSGL-1 with moesin was shown in HL-60 cell lysates by isolating a complex with glutathione S-transferase fusions of the cytoplasmic domain of PSGL-1. Bands of 78- and 81-kd were identified as moesin and ezrin by Western blot analysis. ICAM-3 and moesin also coeluted from neutrophil lysates with an anti-ICAM-3 immunoaffinity assay. Direct interaction of the cytoplasmic domains of ICAM-3 and PSGL-1 with the amino-terminal domain of recombinant moesin was demonstrated by protein-protein binding assays. These results suggest that the redistribution of PSGL-1 and its association with intracellular molecules, including the ezrin-radixin-moesin actin-binding proteins, regulate functions mediated by PSGL-1 in leukocytes stimulated by chemoattractants.


1996 ◽  
Vol 270 (2) ◽  
pp. C522-C529 ◽  
Author(s):  
M. G. Bouma ◽  
F. A. van den Wildenberg ◽  
W. A. Buurman

Ischemia induces excessive ATP catabolism with subsequent local release of its metabolite adenosine, an autacoid with anti-inflammatory properties. Because activation of the vascular endothelium is critical to the inflammatory host response during ischemia and reperfusion, the effects of adenosine on two major determinants of endothelial cell activation (i.e., the release of proinflammatory cytokines and the expression of adhesion molecules) were studied. Adenosine dose dependently inhibited the release of interleukin (IL)-6 and IL-8 by stimulated human umbilical vein endothelial cells (HUVEC). Expression of E-selectin and vascular cell adhesion molecule 1 (VCAM-1), but not intercellular adhesion molecule 1 (ICAM-1), by activated HUVEC was also reduced by adenosine. Inhibition of endogenous adenosine deaminase activity by erythro-9-(2-hydroxy-3-nonyl)adenine or 2'-deoxycoformycin strongly enhanced the inhibitory effects of exogenous adenosine on cytokine release and expression of E-selectin and VCAM-1. However, a clear role for specific adenosine receptors in the described inhibitory events could not be established. Together, these data imply that the vascular endothelium constitutes an important target for the anti-inflammatory actions of adenosine.


2012 ◽  
Vol 23 (1) ◽  
pp. 35-40
Author(s):  
Ayşe Yıldırım ◽  
Aysu T. Karaağaç ◽  
Fusun Güzelmeriç ◽  
Nihat Çine ◽  
Naci C. Öner

AbstractBackgroundThe aim of our study was to compare the blood levels of adhesion molecules in children with different heart diseases and pulmonary flow rates.MethodsIn this study, we evaluated the levels of soluble intercellular adhesion molecule-1 and soluble vascular cellular adhesion molecule-1 in blood samples of 65 children with different congenital heart diseases. The patients were divided into four groups according to their pulmonary blood flow. The first group had increased pulmonary blood flow with pulmonary hypertension and left-to-right shunt. The second group had increased pulmonary blood flow without pulmonary hypertension and left-to-right shunt. The third group had decreased pulmonary blood flow with cyanotic congenital heart disease and the fourth group had normal pulmonary blood flow with left ventricle outflow tract obstruction and aortic stenosis.ResultThe highest soluble intercellular and vascular cellular adhesion molecule-1 levels with the mean values of 420.2 nanograms per millilitre and 1382.1 nanograms per millilitre, respectively, were measured in the first group and the lowest levels with the mean values of 104.4 and 358.6 nanograms per millilitre, respectively, were measured in the fourth group. The highest pulmonary blood pressure levels were found in the first group.ConclusionEndothelial activity is influenced not only by left-to-right shunt with pulmonary hypertension, but also by decreased pulmonary blood flow in cyanotic heart diseases. Adhesion molecules are valuable markers of endothelial activity in congenital heart diseases, and they are influenced by pulmonary blood flow rate.


Sign in / Sign up

Export Citation Format

Share Document