scholarly journals GPX4 Plays a Crucial Role in Fuzheng Kang’ai Decoction-Induced Non-Small Cell Lung Cancer Cell Ferroptosis

Author(s):  
Yue-Yang Zhao ◽  
Yu-Qi Yang ◽  
Hong-Hao Sheng ◽  
Qing Tang ◽  
Ling Han ◽  
...  

Abstract Background: Fuzheng Kang’ai decoction (FZKA) has been widely used to treat Non-Small Cell Lung Cancer (NSCLC) patients in China for decades, showing definite curative effects in clinic. Recently, we found that FZKA could induce NSCLC cell ferroptosis, another type of programmed cell death (PCD), which is totally different from cell apoptosis. Therefore, in the present study, we aim to discover the exact mechanism by which FZKA induces NSCLC cell ferroptosis, which is rarely studied in Traditional Chinese Medicine (TCM). Methods: Cell counting kit-8 assay and EdU proliferation assay were performed to detect the cell viability. Cell ferroptosis triggered by FZKA was observed by performing lipid peroxidation assay, Fe2+ Ions assay, and mitochondrial ultrastructure by transmission electron microscopy. Ferroptosis inhibitors including liproxstatin-1 and UAMC 3203 were used to block ferroptosis. The ratio of GSH/GSSG was done to measure the alteration of oxidative stress. Western blot and qRT-PCR were carried out to detect the expression of SLC7A11, SLC3A2, and glutathione peroxidase 4 (GPX4) at protein and mRNA levels, respectively. Lentivirus transfection was performed to overexpress GPX4 stably. Animal model was done to verify the effect of FZKA-induced ferroptosis in NSCLC in vivo and immunohistochemistry was done to detect the expression of SLC7A11, SLC3A2 and GPX4 at protein level. Results: First of all, in vitro experiments confirmed the inhibition effect of FZKA on NSCLC cell growth. We then, for the first time, found that FZKA induced NSCLC cell ferroptosis evidently, by increasing lipid peroxidation and cellular Fe2+ Ions. Moreover, characteristic morphological changes of NSCLC cell ferroptosis was observed under transmission electron microscopy. Mechanistically, GPX4, as a key inhibitor of lipid peroxidation, was greatly suppressed by FZKA treatment both at protein and mRNA levels. Furthermore, system xc- (SLC7A11 and SLC3A2) were found to be suppressed and a decreased GSH/GSSG ratio was observed at the same time by treating with FZKA. Notably, overexpressing GPX4 reversed the effect of FZKA-induced NSCLC cell ferroptosis significantly. Finally, the above effect was validated using animal model in vivo. Conclusion: Our findings conclude that GPX4 plays a crucial role in FZKA-induced NSCLC cell ferroptosis, providing a novel molecular mechanism by which FZKA treats NSCLC.

2018 ◽  
Vol 51 (5) ◽  
pp. 2324-2340 ◽  
Author(s):  
Xiuyuan Li ◽  
Zenglei Zhang ◽  
Hua Jiang ◽  
Qiang Li ◽  
Ruliang Wang ◽  
...  

Background/Aims: Circular RNAs (circRNAs) are key regulators in the development and progression of human cancers, however its role in non-small cell lung cancer (NSCLC) tumorigenesis is not well understood. The aim of this study is to identify the expression level of circPVT1 in NSCLC and further investigated its functional relevance with NSCLC progression both in vitro and in vivo. Methods: Quantative real-time PCR was used for the measurement of circPVT1 in NSCLC specimens and cell lines. Fluorescence in situ hybridization analysis (FISH) assay was used for the identification of sublocation of circPVT1 in NSCLC cells. Bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation (RIP) were performed to verify the binding of c-Fos at circPVT1 promoter region, and the direct interaction between circPVT1 and miR-125b. Gain- or loss-function assays were performed to evaluate the effects of circPVT1 on cell proliferation and invasion. Western blot and immunohistochemistry assays were performed to detect the protein levels involved in E2F2 pathway. Results: We found that circPVT1 was upregulated in NSCLC specimens and cells. The transcription factor c-Fos binded to the promoter region of circPVT1, resulting in the overexpression of circPVT1 in NSCLC. Knockdown of circPVT1 suppressed NSCLC cell proliferation, migration and invasion, and increased apoptosis. In addition, circPVT1 mediated NSCLC progression via the regulation of E2F2 signaling pathway. More importantly, circPVT1 was predominantly abundant in the cytoplasm of NSCLC cells, and circPVT1 could serve as a competing endogenous RNA to regulate E2F2 expression and tumorigenesis in a miR-125b-dependent manner, which is further verified by using an in vivo xenograft model. Conclusion: circPVT1 promotes NSCLC cell growth and invasion, and may serve as a promising therapeutic target for NSCLC patients. Therefore, silence of circPVT1 could be a future direction to develop a novel treatment strategy.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22100-e22100
Author(s):  
T. Hayashi ◽  
H. Tao ◽  
M. Jida ◽  
T. Kubo ◽  
H. Yamamoto ◽  
...  

e22100 Background: Cancer stem cell (CSCs) are believed to play important roles in tumor development, recurrence or metastasis. Identification of CSCs may have a therapeutic significance. CD133 expression has been shown on a minority of various human cancer cells with high capability of self-renewal and proliferation. Therefore, CD133 is thought to be one of possible markers for CSCs. Regarding human lung cancers, the existence, prevalence or roles of CD133 positive cells has not been fully understood. Methods: We examined CD133 mRNA by quantitative real-time PCR and sorted CD133-positive cells by fluorescence-activated cell sorting (FACS) using human small cell lung cancer(SCLC) and non-small cell lung cancer (NSCLC) cell lines. We evaluated differences of cell proliferation between CD133-positive and -negative cells by MTS assay in vitro and by subcutaneous injection for non- obese diabetic/severe combined immunodeficiency (NOD/SCID) mice in vivo. Results: CD133 expression was almost restricted in SCLC cell lines. CD133 mRNA expression or CD133-positive cell population was scarcely observed in NSCLC cell lines. In two SCLC cell lines examined (NCI-H82 and NCI-H69), CD133 positive cells had higher tumorgenicity both in vivo and in vitro than NSCLC cell lines. Conclusions: The expression status of CD133 is totally different between NSCLCs and SCLCs, probably reflecting the difference of these progenitor cells. Our results indicate that CD133-positive cells in SCLC cell are responsible for tumor growth. However, in view of their wide prevalence, CD133-positive cells do not seem to be a candidate for CSCs, at least in cell lines. To investigate the molecular and functional characteristics of CD133-positive cells may lead to a new therapeutic strategy for human lung cancers, especially for SCLCs. No significant financial relationships to disclose.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Tong Zhou ◽  
Yong-Hua Sang ◽  
Shang Cai ◽  
Chun Xu ◽  
Min-hua Shi

AbstractPOLRMT (RNA polymerase mitochondrial) is responsible for the transcription of mitochondrial genome encoding key components of oxidative phosphorylation. This process is important for cancer cell growth. The current study tested expression and potential functions of POLRMT in non-small cell lung cancer (NSCLC). TCGA cohorts and the results from the local lung cancer tissues showed that POLRMT is overexpressed in human lung cancer tissues. In both primary human NSCLC cells and A549 cells, POLRMT silencing (by targeted lentiviral shRNAs) or knockout (through CRSIPR/Cas9 gene editing method) potently inhibited cell viability, proliferation, migration, and invasion, and induced apoptosis activation. On the contrast, ectopic overexpression of POLRMT using a lentiviral construct accelerated cell proliferation and migration in NSCLC cells. The mtDNA contents, mRNA levels of mitochondrial transcripts, and subunits of respiratory chain complexes, as well as S6 phosphorylation, were decreased in POLRMT-silenced or -knockout NSCLC cells, but increased after ectopic POLRMT overexpression. In vivo, intratumoral injection of POLRMT shRNA adeno-associated virus (AAV) potently inhibited NSCLC xenograft growth in severe combined immune deficiency mice. The mtDNA contents, mRNA levels of mitochondria respiratory chain complex subunits, and S6 phosphorylation were decreased in POLRMT shRNA AAV-injected NSCLC xenograft tissues. These results show that POLRMT is a novel and important oncogene required for NSCLC cell growth in vitro and in vivo.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Lei Song ◽  
Liping Peng ◽  
Shucheng Hua ◽  
Xiaoping Li ◽  
Lianjun Ma ◽  
...  

MicroRNAs (miRNAs or miRs) regulate gene expression at the posttranscriptional level and are involved in many biological processes such as cell proliferation and migration, stem cell differentiation, inflammation, and apoptosis. In particular, miR-144-3p is downregulated in various cancers, and its overexpression inhibits the proliferation and metastasis of cancer cells. However, the role of miR-144-5p in non-small-cell lung cancer (NSCLC), especially radiosensitivity, is unknown. In this study, we found that miR-144-5p was downregulated in NSCLC clinical specimens as well as NSCLC cell lines exposed to radiation. Enhanced expression of miR-144-5p promoted the radiosensitivity of NSCLC cells in vitro and A549 cell mouse xenografts in vivo. Furthermore, we identified activating transcription factor 2 (ATF2) as the direct and functional target of miR-144-5p using integrated bioinformatics analysis and a luciferase reporter assay. In addition, restoration of ATF2 expression inhibited miR-144-5p-induced NSCLC cell sensitivity to radiation in vitro and in vivo. Our findings suggest that deregulation of the miR-144-5p/ATF2 axis plays an important role in NSCLC cell radiosensitivity, thus representing a new potential therapeutic target for NSCLC.


2019 ◽  
Author(s):  
Jiangnan Zheng ◽  
Lingyun Dong ◽  
Yan Zhang ◽  
Shang Cai ◽  
Xiaoyun Hu ◽  
...  

Abstract Background: Bromodomain-containing protein 4 (BRD4) overexpression in non-small cell lung cancer (NSCLC) is important for cancer cell progression. The aim of the present study is to silence BRD4 through expression of its targeted microRNAs in NSCLC cells. Methods: Expression of BRD4 and its targeting miRNA, microRNA-4651 (miR-4651), was tested by qPCR and Western blotting assays. Genetic strategies were utilized to exogenously alter miR-4651 expression. NSCLC cell growth, proliferation and migration were tested. Results: miR-4651 selectively targets and negatively regulates BRD4 in A549 and primary human NSCLC cells. The Ago-2 immunoprecipitation experiments further confirmed that miR-4651 directly binds to BRD4 mRNA. Significantly, in A549 cells and primary NSCLC cells ectopic overexpression of miR-4651 downregulated BRD4’s 3-UTR activity and its expression, both were however elevated with miR-4651 inhibition. Functional studies demonstrated that NSCLC cell growth, proliferation and migration were significantly inhibited with miR-4651 overexpression, but enhanced with miR-4651 inhibition. BRD4 re-expression, by an 3’-UTR mutant BRD4, reversed miR-4651 overexpression-induced inhibitions on A549 cells. Additionally, miR-4651 overexpression or inhibition failed to affect the functions of BRD4-KO A549 cells. In vivo, miR-4651-overexpressed A549 xenografts grew significantly slower than control A549 xenografts in severe combined immunodeficient mice. At last we show that miR-4651 is downregulated in human NSCLC tissues, correlating with BRD4 elevation. Conclusions: miR-4651 targets BRD4 to inhibit NSCLC cell growth in vitro and in vivo.


Author(s):  
Jixian Liu ◽  
Ruixing Luo ◽  
Junbin Wang ◽  
Xinyu Luan ◽  
Da Wu ◽  
...  

BackgroundNon-small cell lung carcinoma (NSCLC) is a type lung cancer with high malignant behaviors. MicroRNAs (miRNAs) are known to be involved in progression of NSCLC. In order to explore potential targets for the treatment of NSCLC, bioinformatics tool was used to analyze differential expressed miRNAs between NSCLC and adjacent normal tissues.MethodsBioinformatics tool was used to find potential targets for NSCLC. Cell proliferation was investigated by Ki67 staining. Cell apoptosis was measured by flow cytometry. mRNA and protein expression in NSCLC cells were detected by RT-qPCR and Western-blot, respectively. Transwell assay was performed to test the cell migration and invasion. In order to investigate the function of exosomal miRNA in NSCLC, in vivo model of NSCLC was constructed.ResultsMiR-770 was identified to be downregulated in NSCLC, and miR-770 agomir could significantly inhibit NSCLC cell proliferation through inducing the apoptosis. Additionally, the metastasis of NSCLC cells was decreased by miR-770 agomir. MAP3K1 was identified to be the target mRNA of miR-770. Meanwhile, tumor cell-derived exosomal miR-770 inhibited M2 macrophage polarization via downregulation of MAP3K1, which in turn suppressed NSCLC cell invasion. Besides, tumor cell-derived exosomal miR-770 markedly decreased NSCLC tumor growth in vivo through suppressing M2 macrophage polarization.ConclusionTumor cell-derived exosomal miR-770 inhibits M2 macrophage polarization to inhibit the invasion of NSCLC cells via targeting MAP3K1. Thus, this study provided a new strategy for the treatment of NSCLC.


2019 ◽  
Author(s):  
Jiangnan Zheng ◽  
Lingyun Dong ◽  
Yan Zhang ◽  
Shang Cai ◽  
Xiaoyun Hu ◽  
...  

Abstract Background: Bromodomain-containing protein 4 (BRD4) overexpression in non-small cell lung cancer (NSCLC) is important for cancer cell progression. The aim of the present study is to silence BRD4 through expression of its targeted microRNAs in NSCLC cells. Methods: Expression of BRD4 and its targeting miRNA, microRNA-4651 (miR-4651), was tested by qPCR and Western blotting assays. Genetic strategies were utilized to exogenously alter miR-4651 expression. NSCLC cell growth, proliferation and migration were tested. Results: miR-4651 selectively targets and negatively regulates BRD4 in A549 and primary human NSCLC cells. The Ago-2 immunoprecipitation experiments further confirmed that miR-4651 directly binds to BRD4 mRNA. Significantly, in A549 cells and primary NSCLC cells ectopic overexpression of miR-4651 downregulated BRD4’s 3-UTR activity and its expression, both were however elevated with miR-4651 inhibition. Functional studies demonstrated that NSCLC cell growth, proliferation and migration were significantly inhibited with miR-4651 overexpression, but enhanced with miR-4651 inhibition. BRD4 re-expression, by an 3’-UTR mutant BRD4, reversed miR-4651 overexpression-induced inhibitions on A549 cells. Additionally, miR-4651 overexpression or inhibition failed to affect the functions of BRD4-KO A549 cells. In vivo, miR-4651-overexpressed A549 xenografts grew significantly slower than control A549 xenografts in severe combined immunodeficient mice. At last we show that miR-4651 is downregulated in human NSCLC tissues, correlating with BRD4 elevation. Conclusions: miR-4651 targets BRD4 to inhibit NSCLC cell growth in vitro and in vivo.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Ying-chen Xia ◽  
Jian-hua Zha ◽  
Yong-Hua Sang ◽  
Hui Yin ◽  
Guo-qiu Xu ◽  
...  

AbstractActivation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.


2019 ◽  
Vol 22 (4) ◽  
pp. 238-244 ◽  
Author(s):  
Gang Chen ◽  
Bo Ye

Purpose: Epithelial-to-Mesenchymal Transition (EMT) was reported to play a key role in the development of Non-Small Cell Lung Cancer (NSCLC). The process of EMT is regulated by the changes of miRNAs expression. However, it is still unknown which miRNA changed the most in the process of canceration and whether these changes played a role in tumor development. Methods: A total of 36 SCLC patients treated in our hospital between 11th, 2015 and 10th, 2017 were enrolled. The samples of cancer tissues and paracancer tissues of patients were collected and analyzed. Then, the miRNAs in normal lung cells and NSCLC cells were also analyzed. In the presence of TGF-β, we transfected the miRNA mimics or inhibitor into NSCLC cells to investigate the role of the significantly altered miRNAs in cell migration and invasion and in the process of EMT. Results: MiR-330-3p was significantly up-regulated in NSCLC cell lines and tissues and miRNA- 205 was significantly down-regulated in NSCLC cell lines and NSCLC tissues. Transfected miRNA-205 mimics or miRMA-330-3p inhibitor inhibited the migration and invasion of NCIH1975 cell and restrained TGF-β-induced EMT in NSCLC cells. Conclusion: miRNA-330-3p and miRNA-205 changed the most in the process of canceration in NSCLC. Furthermore, miR-330-3p promoted cell invasion and metastasis in NSCLC probably by promoting EMT and miR-205 could restrain NSCLC likely by suppressing EMT.


Sign in / Sign up

Export Citation Format

Share Document