Integrated Gene Expression Profiling Analysis Reveals Potential Molecular Mechanisms and Candidate Biomarkers for Early Risk Stratification and Prediction of STEMI and Post-STEMI Heart Failure Patients

Author(s):  
Jing Xu ◽  
Yuejing Yang

Abstract Objective To explore the molecular mechanism and search for the candidate biomarkers with predictive and prognostic potentiality that detectable in the whole blood of STEMI patients and post-STEMI HF patients.Methods In this study, we downloaded GSE60993, GSE61144, GSE66360, and GSE59867 datasets from the NCBI-GEO database. Differentially expressed genes (DEGs) of the datasets were investigated using R. Gene ontology and pathway enrichment were performed via ClueGO, CluePedia, and DAVID database. Protein interaction network was constructed via STRING. Enriched hub genes were analyzed by Cytoscape software. LASSO logistic regression algorithm and ROC analysis were performed to build machine learning models for predicting STEMI. Hub genes for further validated in post-STEMI HF patients from GSE59867.Results We identified 90 up-regulated DEGs and 9 down-regulated DEGs convergence in the three datasets (|log2FC| ≥ 0.8 and adjusted p value < 0.05). They were mainly enriched in Gene Ontology terms relating to cytokine secretion, pattern recognition receptors signaling pathway, and immune cells activation. A cluster of 8 genes including ITGAM, CLEC4D, SLC2A3, BST1, MCEMP1, PLAUR, GPR97, and MMP25 was found to be significant. A machine learning model built by SLC2A3, CLEC4D, GPR97, PLAUR, and BST1 exerted great value for STEMI prediction. Besides, ITGAM and BST1 might be candidate prognostic biomarkers for post-STEMI HF.Conclusions We re-analyzed the integrated transcriptomic signature of STEMI patients showing predictive potentiality and revealed new insights and specific prospective biomarkers for STEMI risk stratification and HF development.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jing Xu ◽  
Yuejin Yang

Objective: To explore the molecular mechanism and search for the candidate differentially expressed genes (DEGs) with the predictive and prognostic potentiality that is detectable in the whole blood of patients with ST-segment elevation (STEMI) and those with post-STEMI HF.Methods: In this study, we downloaded GSE60993, GSE61144, GSE66360, and GSE59867 datasets from the NCBI-GEO database. DEGs of the datasets were investigated using R. Gene ontology (GO) and pathway enrichment were performed via ClueGO, CluePedia, and DAVID database. A protein interaction network was constructed via STRING. Enriched hub genes were analyzed by Cytoscape software. The least absolute shrinkage and selection operator (LASSO) logistic regression algorithm and receiver operating characteristics analyses were performed to build machine learning models for predicting STEMI. Hub genes for further validated in patients with post-STEMI HF from GSE59867.Results: We identified 90 upregulated DEGs and nine downregulated DEGs convergence in the three datasets (|log2FC| ≥ 0.8 and adjusted p &lt; 0.05). They were mainly enriched in GO terms relating to cytokine secretion, pattern recognition receptors signaling pathway, and immune cells activation. A cluster of eight genes including ITGAM, CLEC4D, SLC2A3, BST1, MCEMP1, PLAUR, GPR97, and MMP25 was found to be significant. A machine learning model built by SLC2A3, CLEC4D, GPR97, PLAUR, and BST1 exerted great value for STEMI prediction. Besides, ITGAM and BST1 might be candidate prognostic DEGs for post-STEMI HF.Conclusions: We reanalyzed the integrated transcriptomic signature of patients with STEMI showing predictive potentiality and revealed new insights and specific prospective DEGs for STEMI risk stratification and HF development.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 896-897
Author(s):  
W. Liu ◽  
X. Zhang

Background:Myositis, including dermatomyositis and polymyositis, is autoimmune disorders that is characterized by muscle degeneration in the proximal extremities, with the complications of weakness of muscles, interstitial lung disease and vascular lesions, even leading to death in an acute progressive process[1,2]. However, the molecular mechanisms of myositis are rarely understood.Objectives:Identify the candidate genes in myositis.Methods:Microarray datasets GSE128470, GSE48280 and GSE39454 were extracted from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) and function enrichment analyses were conducted. The protein-protein interaction network and the analyses of hub genes were performed with STRING and Cytoscape.Results:There were 98 DEGs, of which the function and pathways enrichment analyses showed defense response, immune response, response to virus, inflammatory response, response to wounding, cell adhesion, cell proliferation, cell death and macromolecule metabolic process. 20 hub genes were identified, of which 7 including IRF9 TRIM22 MX2 IFITM1 IFI6 IFI44 IFI44L had not been reported in the literature, related to the response to virus, immune response, transcription from RNA polymerase II promoter, cell apoptosis, cell death. The verification analysis about the 7 genes in GSE128314 showed significant differences in myositis.Conclusion:In conclusion, DEGs and hub genes identified in our study showed the potential molecular mechanisms in myositis, providing the helpful targets for diagnosis and clinical strategy of myositis.References:[1] Wu H, Geng D, Xu J. An approach to the development of interstitial lung disease in dermatomyositis: a study of 230 cases in China[J]. Journal of International Medical Research. 2013;41(2):493–501.[2] Fathi M, Dastmalchi M, Rasmussen E, Lundberg IE, Tornling G. Interstitial lung disease, a common manifestation of newly diagnosed polymyositis and dermatomyositis[J]. Annals of the Rheumatic Diseases. 2004;63(3):297–301.Figure 1.The protein-protein interaction network of 20 hub genesFigure 2.7 genes in GSE128314 showed significant differences in myositisAcknowledgments:The authors acknowledge the efforts of the Gene Expression Omnibus (GEO) database. The interpretation and reporting of these data are the sole responsibility of the authors.Disclosure of Interests:None declared


2020 ◽  
Author(s):  
Chenhe Yao ◽  
Xiaoling Zhao ◽  
Xuemeng Shang ◽  
Binghan Jia ◽  
Shuaijie Dou ◽  
...  

Abstract Background: Adrenocortical carcinoma (ACC) is a heterogeneous and rare malignant tumor associated with a poor prognosis. The molecular mechanisms of ACC remain elusive and more accurate biomarkers for the prediction of prognosis are needed.Methods: In this study, integrative profiling analyses were performed to identify novel hub genes in ACC to provide promising targets for future investigation. Three gene expression profiling datasets in the GEO database were used for the identification of overlapped differentially expressed genes (DEGs) following the criteria of adj.P.Value<0.05 and |log2 FC|>0.5 in ACC. Novel hub genes were screened out following a series of processes: the retrieval of DEGs with no known associations with ACC on Pubmed, then the cross-validation of expression values and significant associations with overall survival in the GEPIA2 and starBase databases, and finally the prediction of gene-tumor association in the GeneCards database.Results: Four novel hub genes were identified and two of them, TPX2 and RACGAP1, were positively correlated with the staging. Interestingly, co-expression analysis revealed that the association between TPX2 and RACGAP1 was the strongest and that the expression of HOXA5 was almost completely independent of that of RACGAP1 and TPX2. Furthermore, the PPI network consisting of four novel genes and seed genes in ACC revealed that HOXA5, TPX2, and RACGAP1 were all associated with TP53. Conclusions: This study identified four novel hub genes (TPX2, RACHAP1, HXOA5 and FMO2) that may play crucial roles in the tumorigenesis and the prediction of prognosis of ACC.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiayan Wu ◽  
Shengkun Hong ◽  
Xiankuan Xie ◽  
Wangmi Liu

Objective. Dipsaci Radix (DR) has been used to treat fracture and osteoporosis. Recent reports have shown that myeloid cells from bone marrow can promote the proliferation of lung cancer. However, the action and mechanism of DR has not been well defined in lung cancer. The aim of the present study was to define molecular mechanisms of DR as a potential therapeutic approach to treat lung cancer. Methods. Active compounds of DR with oral bioavailability ≥30% and drug-likeness index ≥0.18 were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform. The potential target genes of the active compounds and bone were identified by PharmMapper and GeneCards, respectively. The compound-target network and protein-protein interaction network were built by Cytoscape software and Search Tool for the Retrieval of Interacting Genes webserver, respectively. GO analysis and pathway enrichment analysis were performed using R software. Results. Our study demonstrated that DR had 6 active compounds, including gentisin, sitosterol, Sylvestroside III, 3,5-Di-O-caffeoylquinic acid, cauloside A, and japonine. There were 254 target genes related to these active compounds as well as to bone. SRC, AKT1, and GRB2 were the top 3 hub genes. Metabolisms and signaling pathways associated with these hub genes were significantly enriched. Conclusions. This study indicated that DR could exhibit the anti-lung cancer effect by affecting multiple targets and multiple pathways. It reflects the traditional Chinese medicine characterized by multicomponents and multitargets. DR could be considered as a candidate for clinical anticancer therapy by regulating bone physiological functions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257343
Author(s):  
Shaoshuo Li ◽  
Baixing Chen ◽  
Hao Chen ◽  
Zhen Hua ◽  
Yang Shao ◽  
...  

Objectives Smoking is a significant independent risk factor for postmenopausal osteoporosis, leading to genome variations in postmenopausal smokers. This study investigates potential biomarkers and molecular mechanisms of smoking-related postmenopausal osteoporosis (SRPO). Materials and methods The GSE13850 microarray dataset was downloaded from Gene Expression Omnibus (GEO). Gene modules associated with SRPO were identified using weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, and pathway and functional enrichment analyses. Feature genes were selected using two machine learning methods: support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF). The diagnostic efficiency of the selected genes was assessed by gene expression analysis and receiver operating characteristic curve. Results Eight highly conserved modules were detected in the WGCNA network, and the genes in the module that was strongly correlated with SRPO were used for constructing the PPI network. A total of 113 hub genes were identified in the core network using topological network analysis. Enrichment analysis results showed that hub genes were closely associated with the regulation of RNA transcription and translation, ATPase activity, and immune-related signaling. Six genes (HNRNPC, PFDN2, PSMC5, RPS16, TCEB2, and UBE2V2) were selected as genetic biomarkers for SRPO by integrating the feature selection of SVM-RFE and RF. Conclusion The present study identified potential genetic biomarkers and provided a novel insight into the underlying molecular mechanism of SRPO.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Md. Rakibul Islam ◽  
Lway Faisal Abdulrazak ◽  
Mohammad Khursheed Alam ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
...  

Background. Medulloblastoma (MB) is the most occurring brain cancer that mostly happens in childhood age. This cancer starts in the cerebellum part of the brain. This study is designed to screen novel and significant biomarkers, which may perform as potential prognostic biomarkers and therapeutic targets in MB. Methods. A total of 103 MB-related samples from three gene expression profiles of GSE22139, GSE37418, and GSE86574 were downloaded from the Gene Expression Omnibus (GEO). Applying the limma package, all three datasets were analyzed, and 1065 mutual DEGs were identified including 408 overexpressed and 657 underexpressed with the minimum cut-off criteria of ∣ log   fold   change ∣ > 1 and P < 0.05 . The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways enrichment analyses were executed to discover the internal functions of the mutual DEGs. The outcomes of enrichment analysis showed that the common DEGs were significantly connected with MB progression and development. The Search Tool for Retrieval of Interacting Genes (STRING) database was used to construct the interaction network, and the network was displayed using the Cytoscape tool and applying connectivity and stress value methods of cytoHubba plugin 35 hub genes were identified from the whole network. Results. Four key clusters were identified using the PEWCC 1.0 method. Additionally, the survival analysis of hub genes was brought out based on clinical information of 612 MB patients. This bioinformatics analysis may help to define the pathogenesis and originate new treatments for MB.


2020 ◽  
Author(s):  
Xichao Wen ◽  
Meijuan Fu ◽  
Wensong Wu ◽  
Zhaomu Zeng ◽  
Kebin Zheng

Abstract Background Glioma is one of the most common primary intracranial tumors. Although a lot of studies have been conducted to elucidate the pathogeny of glioma, the molecular mechanisms are still unclear because of its complex biological functions. Methods To identify the candidate genes in the carcinogenesis and progression of glioma, microarray datasets GSE4290, GSE122498 and GSE2223 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and performed function enrichment of DEGs by Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The protein-protein interaction network (PPI) was constructed using STRING and Cytoscape to find hub genes. Survival analysis and GEPIA database was conducted to screen and validate critical genes. Analysis of miRNA and genetic alteration was used to explore and predict the molecule mechanism. Results A total of 150 DEGs were identified, consisting of 54 downregulated genes and 96 upregulated genes. The enriched functions and pathways of the DEGs include regulation of transportation, synaptic transmission and SH3 domain binding. Fifteen hub genes were identified and biological process analysis revealed that these genes were mainly enriched in SH3 domain binding, neuron projection terminus, mitotic nuclear division, condensed chromosome and affected the brain development. Survival analysis showed that VAMP2, PPP3CA, DLGAP5, KIF14, REPS2, CENPU, KNTC1 and SMC4, may be involved in the carcinogenesis, invasion or recurrence of glioma. These 8 hub genes, which were related miRNAs and genetic changes were commonly involved in the development of glioma, were closely associated with tumor grade. Conclusion DEGs and hub genes identified in the present study help us understand the molecular mechanisms of carcinogenesis and progression of glioma, and provide candidate targets for diagnosis and treatment of glioma.


2021 ◽  
Author(s):  
Nikoleta Vavouraki ◽  
James E. Tomkins ◽  
Eleanna Kara ◽  
Henry Houlden ◽  
John Hardy ◽  
...  

AbstractThe Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Despite the identification of causative mutations in over 70 genes, the molecular aetiology remains unclear. Due to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes. In this study, experimentally validated human protein-protein interactions were used to create a protein-protein interaction network based on the causative Hereditary Spastic Paraplegia genes. Network evaluation as a combination of both topological analysis and functional annotation led to the identification of core proteins in putative shared biological processes such as intracellular transport and vesicle trafficking. The application of machine learning techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, suggesting there is scope to further classify conditions currently described under the same umbrella term of Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease.


2020 ◽  
Vol 19 ◽  
pp. 153303382096213
Author(s):  
Liqi Li ◽  
Mingjie Zhu ◽  
Hu Huang ◽  
Junqiang Wu ◽  
Dong Meng

Anaplastic thyroid carcinoma (ATC) is a rare type of thyroid cancer that results in fatal clinical outcomes; the pathogenesis of this life-threatening disease has yet to be fully elucidated. This study aims to identify the hub genes of ATC that may play key roles in ATC development and could serve as prognostic biomarkers or therapeutic targets. Two microarray datasets (GSE33630 and GSE53072) were obtained from the Gene Expression Omnibus database; these sets included 16 ATC and 49 normal thyroid samples. Differential expression analyses were performed for each dataset, and 420 genes were screened as common differentially expressed genes using the robust rank aggregation method. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to explore the potential bio-functions of these differentially expressed genes (DEGs). The terms and enriched pathways were primarily associated with cell cycle, cell adhesion, and cancer-related signaling pathways. Furthermore, a protein-protein interaction network of DEG expression products was constructed using Cytoscape. Based on the whole network, we identified 7 hub genes that included CDK1, TOP2A, CDC20, KIF11, CCNA2, NUSAP1, and KIF2C. The expression levels of these hub genes were validated using quantitative polymerase chain reaction analyses of clinical specimens. In conclusion, the present study identified several key genes that are involved in ATC development and provides novel insights into the understanding of the molecular mechanisms of ATC development.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 10035-10035
Author(s):  
Mehul Gupta ◽  
Sunand Nageswaran Kannappan ◽  
Aru Narendran ◽  
Pinaki Bose

10035 Background: Neuroblastoma (NB) is the most common extracranial solid tumor in children. Despite the development of risk stratification tools to improve prognostication, prediction of patient survival outcomes in NB remains poor. In this study we used an unbiased machine-learning algorithm to develop and validate a transcriptomic signature capable of predicting 5-year overall (OS) and event-free survival (EFS) in these patients. Methods: The TARGET-Neuroblastoma dataset (n = 243) was used as the training set. Two independent NB cohorts, E-MTAB-179 (n = 478) and GSE85047 (n = 266) were used as validation sets. Elastic net regression was employed to identify transcripts associated with EFS. Association of the developed signature with EFS and OS was evaluated using univariate Cox proportional hazards (CoxPH), Kaplan-Meier, and 5-year receiver-operator characteristic curves in validation cohorts. Further, the independent prognostic value of the signature was assessed using multivariate CoxPH models with relevant clinicopathologic variables including age, INSS stage, and N-Myc amplification status in both validation sets. Finally, a nomogram was developed to integrate the signature with prognostic clinicopathologic variables to evaluate their combined efficacy for prediction of 5-year EFS and OS. Results: We identified a 21-gene signature that demonstrates significant association with EFS and OS in both E-MTAB-178 and GSE49710 validation cohorts. Moreover, the signature is independent of clinicopathological variables and can be effectively incorporated into a risk model, improving the prognostic performance. Several genes within the signature have been previously implicated in NB, including ECEL1, HOXC9 and ARAF1. Conclusions: To the best of our knowledge, we are the first to use an unbiased machine learning approach to generate a transcriptomic gene signature for neuroblastoma prognosis externally validated in multiple cohorts across platforms. This 21-gene transcriptomic signature significantly associated with EFS and OS in this disease. Combining this signature with current prognostic clinicopathologic variables will improve risk stratification of affected patients and may inform effective clinical decision-making.[Table: see text]


Sign in / Sign up

Export Citation Format

Share Document