scholarly journals Green Phellodendri Chinensis Cortex-based Carbon Dots for Ameliorating Imiquimod-induced Psoriasis-like Inflammation in Mice

Author(s):  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Jie Hu ◽  
Juan Luo ◽  
Yue Zhang ◽  
...  

Abstract Background: Carbon dots with multifaceted advantages have been provided hope for development brand-new nanodrug for treating thorny diseases.This study developed a green and simple calcination method to prepare novel cardon dots (CDs) as promising drug for psoriasis treatment. The as-prepared CDs using Phellodendri Chinensis Cortex (PCC) as sole precursor were characterized by a series of methods, mainly including electron microscopy, optical technology and X-ray photoelectron spectroscopy (XPS).Results: Results displayed that fluorescence (Quantum yield =5.63%) and nontoxic PCC-based CDs (PCC-CDs) with abundant chemical groups exhibited solubility and tiny sizes at average of (1.93 ± 0.53) nm, which may be beneficial for its inherent biological activity. Moreover, by using the typical imiquimod (IMQ) – induced psoriasis-like skin mouse model, we firstly demonstrated the pronounced anti-psoriasis activity of as-prepared PCC-CDs on ameliorating the appearance, psoriasis area and severity index (PASI) scores as well as histopathological morphology of both back tissues and right ears in IMQ-induced mouse. Further potential mechanisms behind the anti-psoriasis activities may be related to the anti-inflammation effects of PCC-CDs by descending the serum levels of proinflammatory cytokines (TNF-α, IL-6 and IL-17A). Conclusion: These results suggested that PCC-CDs have potential to be an anti-psoriasis candidate for clinical applications to treat psoriasis, which not only provided an evidence for further broadening the biological application of CDs, but also provided a potential hope for application nanodrugs to treat thorny diseases.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Jie Hu ◽  
Juan Luo ◽  
Yue Zhang ◽  
...  

Abstract Background Carbon dots (CDs) with multifaceted advantages have provided hope for development brand-new nanodrug for treating thorny diseases. This study developed a green and simple calcination method to prepare novel CDs as promising drug for psoriasis treatment. The as-prepared CDs using Phellodendri Chinensis Cortex (PCC) as sole precursor were characterized by a series of methods, mainly including electron microscopy, optical technology and X-ray photoelectron spectroscopy (XPS). Results Results displayed that fluorescence (Quantum yield = 5.63%) and nontoxic PCC-based CDs (PCC-CDs) with abundant chemical groups exhibited solubility and tiny sizes at average of (1.93 ± 0.53) nm, which may be beneficial for its inherent biological activity. Moreover, by using the typical imiquimod (IMQ)-induced psoriasis-like skin mouse model, we firstly demonstrated the pronounced anti-psoriasis activity of as-prepared PCC-CDs on ameliorating the appearance, psoriasis area and severity index (PASI) scores as well as histopathological morphology of both back skin tissues and right ears in IMQ-induced mouse. Further potential mechanisms behind the anti-psoriasis activities may be related to suppress M1 polarization and relatively promote M2 polarization of macrophage both in vitro and in vivo. Conclusion These results suggested that PCC-CDs have potential to be an anti-psoriasis candidate for clinical applications to treat psoriasis, which not only provided an evidence for further broadening the biological application of CDs, but also provided a potential hope for application nanodrugs to treat thorny diseases. Graphic Abstract


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1512
Author(s):  
Yuhan Liu ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Yue Zhang ◽  
Hui Kong ◽  
...  

Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.


2018 ◽  
Vol 122 (26) ◽  
pp. 14889-14897 ◽  
Author(s):  
Irene Papagiannouli ◽  
Minna Patanen ◽  
Valérie Blanchet ◽  
John D. Bozek ◽  
Manuel de Anda Villa ◽  
...  

2020 ◽  
Vol 10 (11) ◽  
pp. 1777-1787
Author(s):  
Yadian Xie ◽  
Shanshan Wang ◽  
Ning Fu ◽  
Yan Yang ◽  
Xingliang Liu ◽  
...  

Carbon dots (CDs) also nitrogen-doped CDs (N-CDs) were produced by green hydrothermal synthesis using Pea and ethanediamine as the carbon and nitrogen source, separately. Transmission electron microscopy (TEM) images displayed that the prepared CDs and N-CDs were well dispersed, had a spherical morphology. X-ray diffraction (XRD) figures of CDs and N-CDs presented a graphitic amorphous structure. Fourier transform infrared spectroscopy (FT-IR) verified that CDs and N-CDs carried many different hydrophilic groups (for example hydroxyl, carboxyl/carbonyl, amide, amino groups) on the surface, X-ray photoelectron spectroscopy (XPS) together verified this result. However, the optical properties and fluorescence quantum yield for N-CDs were obviously superior to those of CDs. Furthermore, the prepared N-CDs displayed outstanding advantages including low toxicity, satisfactory biocompatibility, and excellent chemical stability. More prominently, the prepared N-CDs could detect Hg2+ ions with high sensitivity and selectivity in both water samples and HeLa cells.


2021 ◽  
Author(s):  
Yu Fan ◽  
Yan-ning Yang ◽  
Chen Ding

Abstract The g-C3N4 nanosheet was prepared by calcination method, the MoS2 nanosheet was prepared by hydrothermal method. The g-C3N4/MoS2 composites were prepared by ultrasonic composite in anhydrous ethanol. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis), and photoluminescence (PL) techniques were used to characterize the materials. The photocatalytic degradation of Rhodamine B (Rh B) by g-C3N4/MoS2 composites with different mass ratios was investigated under visible light. The results show that a small amount of MoS2 combined with g-C3N4 can significantly improve photocatalytic activity. The g-C3N4/MoS2 composite with a mass ratio of 1:8 has the highest photocatalytic activity, and the degradation rate of Rh B increases from 50% to 99.6%. The main reason is that MoS2 and g-C3N4 have a matching band structure. The separation rate of photogenerated electron-hole pairs is enhanced. So the g-C3N4/MoS2 composite can improve the photocatalytic activity. The photocatalytic mechanism was proposed through the active matter capture experiment.


2019 ◽  
Vol 43 (11-12) ◽  
pp. 507-515 ◽  
Author(s):  
Ning Wang ◽  
Xuebing Li ◽  
Xuefang Yang ◽  
Zenglian Tian ◽  
Wei Bian ◽  
...  

Nitrogen-doped carbon dots were synthesized using citric acid monohydrate and glutathione as raw materials. The synthesized nitrogen-doped carbon dots were characterized by multiple analytical techniques, including transmission electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, and fluorescence spectra. The fluorescence intensity of the nitrogen-doped carbon dots gradually quenched with different concentrations of Cu2+ ions. The effect of the pH value, the nitrogen-doped carbon dot concentration, and the reaction time on the fluorescence intensity of the N-CDs-Cu2+ system was investigated, and the experimental conditions were optimized. A rapid and sensitive method for the determination of Cu2+ ions was established that exhibited a good linearity in the concentration range 0.20–200.0 μM with a detection limit of 0.27 nM. Meanwhile, the fluorescence quenching mechanism of the interaction between nitrogen-doped carbon dots and Cu2+ was preliminarily discussed. The method was used to detect trace Cu2+ in tap water and lake water, with recoveries ranging from 98.1% to 102.0%. Furthermore, due to low cytotoxicity and good biocompatibility, nitrogen-doped carbon dots as a probe were also successfully used in bioimaging.


2010 ◽  
Vol 113-116 ◽  
pp. 2154-2157 ◽  
Author(s):  
Si Yao Guo ◽  
Jin Bing Sun ◽  
Feng Lu Wang ◽  
Lin Yang ◽  
Feng Zhang ◽  
...  

Phosphor-doped titania nanoparticles were synthesized by a one step method, which were prepared by conventional calcination method. These samples have much higher photocatalytic activity for methylene blue degradation. The resulting materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc. Moreover, we use high P/TiO2 molar ratio to get the most suitable proportion for the synthesis of P-doped titania photocatalyst.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 676
Author(s):  
Siyang Ji ◽  
Yanling Yang ◽  
Xing Li ◽  
Hang Liu ◽  
Zhiwei Zhou

A novel heterogeneous Fenton-like photocatalyst, Fe-doped graphitic carbon nitride (Fe-g-C3N4), was produced by facile two-step calcination method. This Fe–g–C3N4 catalyzed rhodamine B degradation in the presence of H2O2 accompanied with visible light irradiation. transmission electron microscopy(TEM), x-ray diffraction (XRD), FT-IR, x-ray photoelectron spectroscopy (XPS), and photoluminescence fluorescent spectrometer (PL) characterization analysis methods were adopted to evaluate the physicochemical property of samples. It can be observed that the Fe-g-C3N4 exhibited excellent photocatalytic Fenton-like activity at a wide pH range of 3–9, with rhodamine B(RhB) degradation efficiency up to 95.5% after irradiation for 45 min in the presence of 1.0 mM H2O2. Its high activity was ascribed to the formation of Fe–N ligands in the triazine rings that accelerated electron movement driving the Fe(III)/Fe(II) redox cycle, and inhibited photo-generated electron hole re-combinations for continuous generation of reactive oxygen species by reactions between Fe(II) and H2O2. The main active oxygen species were hydroxyl radicals, followed by superoxide radicals and hole electrons. This produced catalyst of Fe–g–C3N4 shows excellent reusability and stability, and can be a promising candidate for decontamination of wastewater.


Holzforschung ◽  
2008 ◽  
Vol 62 (6) ◽  
Author(s):  
Lothar Klarhöfer ◽  
Burkhard Roos ◽  
Wolfgang Viöl ◽  
Oliver Höfft ◽  
Stefan Dieckhoff ◽  
...  

Abstract The valence band of lignin and sputtered lignin was studied by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and metastable induced electron spectroscopy (MIES). The corresponding spectra were compared with those from fingerprint molecules, representing the various chemical groups of lignin. The results of this analysis show that valence band spectroscopy, in particular a combination of XPS, UPS and MIES, allows an identification of hydroxyl, methoxy and phenyl groups at the lignin surface.


2004 ◽  
Vol 286 (5) ◽  
pp. E766-E772 ◽  
Author(s):  
Rikke Krogh-Madsen ◽  
Kirsten Møller ◽  
Flemming Dela ◽  
Gitte Kronborg ◽  
Sune Jauffred ◽  
...  

Insulin therapy to maintain euglycemia increases survival in critically ill patients. To explore possible mechanisms of action, we investigated the effect of endotoxin on circulating cytokines, free fatty acids (FFA), and leukocytes during manipulated plasma glucose and insulin concentrations. Ten volunteers underwent three trials each, receiving an intravenous bolus of endotoxin (0.2 ng/kg) during normoglycemia ( trial A, control), during a hyperglycemic clamp at 15 mM ( trial B), and during a hyperinsulinemic euglycemic clamp ( trial C). Endotoxin induced an increase in neutrophil count, a decrease in lymphocyte count, and an increase in serum levels of TNF-α, IL-6, and FFA. There was no difference in the TNF response between the three trials; the IL-6 levels were increased during the late phase of trials B and C compared with trial A. The endotoxin-induced elevation in FFA in trial A was suppressed during trials B and C. Clamping ( trials B and C) caused a reduction in lymphocyte count that persisted after endotoxin injection. We conclude that low-dose endotoxemia triggers a subclinical inflammatory response and an elevation in FFA. The finding that high insulin serum concentrations induce a more prolonged increase in the anti-inflammatory cytokine IL-6 and suppress the levels of FFA suggests that insulin treatment of patients with sepsis may exert beneficial effects by inducing anti-inflammation and protection against FFA toxicity, and thereby inhibit FFA-induced insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document