scholarly journals ZbSR: A Data Plane Security Model of SR-BE/TE based on Zero-Trust Architecture

Author(s):  
Liang Wang ◽  
Hailong Ma ◽  
Ziyong Li ◽  
Jinchuan Pei ◽  
Tao Hu ◽  
...  

Abstract Facing the untrusted threats of network elements and PKI/CA faced by SR-BE/TE(Segment Routing-BE/TE) data plane in the zero-trust network environment, firstly, this paper refines it into eight specific security issues. Secondly, an SR-BE/TE data plane security model ZbSR(ZTA-based SR) based on zero-trust architecture is proposed, which reconstructs the original SR control plane into a "trust-agent" two-layer plane based on 4 components of the controller, agent, cryptographic center and information base. On one hand, we distinguish between the two segment list generation modes and proposes corresponding data exchange security algorithms, by introducing north-south security verification based on identity authentication, trust evaluation, and key agreement before the terminal device establishes an east-west access connection, so reliable data exchange between terminal devices can be realized. On the other hand, for the network audit lacking SR-BE/TE, a network audit security algorithm based on solid authentication is proposed. By auditing the fields, behaviors, loops, labels, paths, and SIDs of messages, threats such as stream path tampering, SID tampering, DoS attacks, and loop attacks can be effectively detected. Finally, through the simulation test, the proposed model can provide security protection for the SR data plane with a 19.3% average incremental delay overhead for various threat scenarios.

2017 ◽  
Vol 8 (1) ◽  
pp. 1-10
Author(s):  
Is Mardianto ◽  
Kuswandi Kuswandi

Security issues have become a major issue on the Internet. One of the security methods that are widely used today is to implement a digital certificate. Digital certificates have evolved over time, one of which is the X.509 digital certificate. Digital certificates have been widely used as authentication applications, web network authentication and other authentication systems that require digital certificates. This research is carried out by implementing an X.509 digital certificate technology as a mobile web service with its client. Secure Hash Algorithm (SHA), Diffie-Hellman, and Advanced Encryption Standard (AES) are used to secure the data exchange transaction between the web service and mobile phone. SHA algorithm will be used for user authentication, Diffie-Hellman algorithm will be used for public key exchange and AES algorithms will be used for symmetric cryptography data. The results of the application of digital certificates, the SHA algorithm, Diffie-Hellman, and AES in mobile phone applications, provide security application running on web service. Index Terms—Digital Certificate, X.509, SHA, Diffie Hellman, AES


Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 253-270
Author(s):  
Mohammed Bin Hariz ◽  
Dhaou Said ◽  
Hussein T. Mouftah

This paper focuses on transportation models in smart cities. We propose a new dynamic mobility traffic (DMT) scheme which combines public buses and car ride-sharing. The main objective is to improve transportation by maximizing the riders’ satisfaction based on real-time data exchange between the regional manager, the public buses, the car ride-sharing and the riders. OpenStreetMap and OMNET++ were used to implement a realistic scenario for the proposed model in a city like Ottawa. The DMT scheme was compared to a multi-loading system used for a school bus. Simulations showed that rider satisfaction was enhanced when a suitable combination of transportation modes was used. Additionally, compared to the other scheme, this DMT scheme can reduce the stress level of car ride-sharing and public buses during the day to the minimal level.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 772 ◽  
Author(s):  
Houshyar Honar Pajooh ◽  
Mohammad Rashid ◽  
Fakhrul Alam ◽  
Serge Demidenko

The proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.


2019 ◽  
Vol 2 (4) ◽  
pp. 530
Author(s):  
Amr Hassan Yassin ◽  
Hany Hamdy Hussien

Due to the exponential growth of E-Business and computing capabilities over the web for a pay-for-use groundwork, the risk factors regarding security issues also increase rapidly. As the usage increases, it becomes very difficult to identify malicious attacks since the attack patterns change. Therefore, host machines in the network must continually be monitored for intrusions since they are the final endpoint of any network. The purpose of this work is to introduce a generalized neural network model that has the ability to detect network intrusions. Two recent heuristic algorithms inspired by the behavior of natural phenomena, namely, the particle swarm optimization (PSO) and gravitational search (GSA) algorithms are introduced. These algorithms are combined together to train a feed forward neural network (FNN) for the purpose of utilizing the effectiveness of these algorithms to reduce the problems of getting stuck in local minima and the time-consuming convergence rate. Dimension reduction focuses on using information obtained from NSL-KDD Cup 99 data set for the selection of some features to discover the type of attacks. Detecting the network attacks and the performance of the proposed model are evaluated under different patterns of network data.


Author(s):  
Svetlana Teslya ◽  

Relevance of the problem: the need to develop a new field of knowledge-security psychology, which could rely on the basic philosophical and psychological concept of security, methodologically, theoretically and practically able to provide a new field of knowledge integrative character. The purpose of the research: development of security psychology as a direction of fundamental socio-philosophical and psychological research. Hypothesis: it is possible to substantiate the psychological status of the concepts of "danger" and "security", which will give grounds to talk about their interdependence and as an experience-living; the "subjectivity model", "psychological model of subjectivity of a social subject", and "psychological model of security", which have never appeared before, can be introduced into the scientific plan of consideration, and set as the Central theme for the entire basic concept of security. Discussion of the results is divided into three blocks: (1) Deepening the methodological foundations of security psychology as a direction of socio-psychological research: approaches, principles, methods; (2) Formation of the conceptual framework of security psychology as a new field of knowledge; (3) Major problems that have been put forward and justified throughout the research. Conclusions: based on axiological, cultur-antropological, contextual, subjective, and synergetic approaches, a theoretical scheme of security psychology and its basic concept is constructed; seventeen key concepts were developed, with the help of which a thematic correction was made concerning the security issues and the formalization of security psychology; the diagnostic tools are developed that allow to conclude about the state of psychological security model of the social subject; a method of self-diagnosis of the ratio of their resources with the resources of significant others has been developed; a frame analysis of local variable functions of 4 subjectivity codes is presented; a model for diagnosing the content of the psychological model of subjectivity at the stage of acquiring a specific professional identity is presented; a resource concept of security and its empirical application to the problem of professional burnout is developed.


2022 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Njabulo Sakhile Mtetwa ◽  
Paul Tarwireyi ◽  
Cecilia Nombuso Sibeko ◽  
Adnan Abu-Mahfouz ◽  
Matthew Adigun

The Internet of Things (IoT) is changing the way consumers, businesses, and governments interact with the physical and cyber worlds. More often than not, IoT devices are designed for specific functional requirements or use cases without paying too much attention to security. Consequently, attackers usually compromise IoT devices with lax security to retrieve sensitive information such as encryption keys, user passwords, and sensitive URLs. Moreover, expanding IoT use cases and the exponential growth in connected smart devices significantly widen the attack surface. Despite efforts to deal with security problems, the security of IoT devices and the privacy of the data they collect and process are still areas of concern in research. Whenever vulnerabilities are discovered, device manufacturers are expected to release patches or new firmware to fix the vulnerabilities. There is a need to prioritize firmware attacks, because they enable the most high-impact threats that go beyond what is possible with traditional attacks. In IoT, delivering and deploying new firmware securely to affected devices remains a challenge. This study aims to develop a security model that employs Blockchain and the InterPlanentary File System (IPFS) to secure firmware transmission over a low data rate, constrained Long-Range Wide Area Network (LoRaWAN). The proposed security model ensures integrity, confidentiality, availability, and authentication and focuses on resource-constrained low-powered devices. To demonstrate the utility and applicability of the proposed model, a proof of concept was implemented and evaluated using low-powered devices. The experimental results show that the proposed model is feasible for constrained and low-powered LoRaWAN devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Amr M. Sauber ◽  
Passent M. El-Kafrawy ◽  
Amr F. Shawish ◽  
Mohamed A. Amin ◽  
Ismail M. Hagag

The main goal of any data storage model on the cloud is accessing data in an easy way without risking its security. A security consideration is a major aspect in any cloud data storage model to provide safety and efficiency. In this paper, we propose a secure data protection model over the cloud. The proposed model presents a solution to some security issues of cloud such as data protection from any violations and protection from a fake authorized identity user, which adversely affects the security of the cloud. This paper includes multiple issues and challenges with cloud computing that impairs security and privacy of data. It presents the threats and attacks that affect data residing in the cloud. Our proposed model provides the benefits and effectiveness of security in cloud computing such as enhancement of the encryption of data in the cloud. It provides security and scalability of data sharing for users on the cloud computing. Our model achieves the security functions over cloud computing such as identification and authentication, authorization, and encryption. Also, this model protects the system from any fake data owner who enters malicious information that may destroy the main goal of cloud services. We develop the one-time password (OTP) as a logging technique and uploading technique to protect users and data owners from any fake unauthorized access to the cloud. We implement our model using a simulation of the model called Next Generation Secure Cloud Server (NG-Cloud). These results increase the security protection techniques for end user and data owner from fake user and fake data owner in the cloud.


2017 ◽  
Vol 5 (1) ◽  
pp. 230-238
Author(s):  
Sayantan Gupta

The technology of Quantum Green Computing has been discussed in this paper. It also discusses the need of the many implementation techniques and approaches in relation with Fog-Cloud Computing. Moreover, we would like to introduce the latest algorithms like Stack Algorithm, Address Algorithm and many others which will help in the analysis of Green-Quantum Computing Technology in the modern society and would create a technological revolution. With the Internet of Things rising in the modern world time, new security issues have also been developed. So, our proposed Model the Fog-Things Model will help us to determine the security issues and indeed secure the entire IoT network.


Author(s):  
J V N Lakshmi

Unmanned Aerial Vehicles usage has significantly improved in all the sectors. Various industries are using drones as a platform for development with eco- nomic investment. Drastic advancement in design, flexibility, equipment and technical improvements has a great impact in creating airborne domain of IoT. Hence, drones have become a part of farming industry. Indian agriculture economy concentrates more on producing rice as this is considered as a staple food in various states. For increasing the production of rice sensors are equipped in the fields to track the water supply and humidity components. Whereas, identifying weeds, early stages of disease detection, recognizing failed crops, spraying fertilizers and continuous monitoring from bleats, locust and other dangerous insects are some of the technical collaboration with UAVs with respect farming sector. However, use of UAVs in real time environment involves many security and privacy challenges. In order to preserve UAVs from external vulnerabilities and hacking the collaborative environment requires a tough security model. In this proposed article a framework is implemented applying FIBOR security model on UAVs to suppress the threats from data hackers and protect the data in cloud from attackers. This proposed model enabled with drone technology provides a secured framework and also improves the crop yield by 15% by adapting a controlled network environment.


Sign in / Sign up

Export Citation Format

Share Document