scholarly journals Lelliottia Rebaudianalis Sp. Nov. Isolated From Wild Stevia Rebaudiana Bertoni

Author(s):  
Jing Lin ◽  
Ke Huang ◽  
Jing-Yu Huang ◽  
Yuan-Ru Xiong ◽  
Meng-Meng Wei ◽  
...  

Abstract A Gram-stain-negative, aerobic, chemoheterotrophic bacterium, characterized with rod shape and mobility, designated as LST-1T, was isolated from wild Stevia rebaudiana Bertoni and subjected to polyphasic taxonomic analysis. The LST-1T strain grew optimally at 37 °C and pH 6.0–7.0 in the presence of 0.5 % (w/v) NaCl. Phylogenetic sequence analysis based on 16S rDNA from LST-1 indicated that it is close to Lelliottia jeotgali (99.85%), Lelliottia nimipressuralis (98.82%), and Lelliottia amnigena (98.54%). Multi-locus sequence typing analysis of concatenated partial recA, atpD, and infB was performed to improve resolution, and clear distinctions between the closest related type strains were exhibited. Meanwhile, the results from average nucleotide identify analyses and DNA–DNA hybridization with four species (16S rDNA similarity > 98.65%) were less than 90% and 40% respectively, verifying the distinct characteristics from other species of Lelliottia, The cellular fatty acid profile of the strain consisted of C16:0, Summed Feature3, and Summed Feature8 (may be 16:1 w6c/16:1 w7c and 18:1 w6c) as major components. The major polar lipids included phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid, three non-characteristic phospholipids, and a non-characteristic lipid. The genome of LST-1T is 4,611,055 bp, with a DNA G + C content of 55.02%. Combination of several phenotypic, chemotaxonomic, and genomic characteristics proved that the LST-1T strain does represent a novel genus, for which the name Lelliottia sp. LST-1 was proposed. The type strain is LST-1T (= CGMCC 1.19175T = JCM 34938T).

2005 ◽  
Vol 55 (5) ◽  
pp. 2101-2104 ◽  
Author(s):  
Kouta Hatayama ◽  
Hirofumi Shoun ◽  
Yasuichi Ueda ◽  
Akira Nakamura

Four thermophilic, Gram-positive strains, designated H0165T, 500275T, C0170 and 700375, were isolated from a composting process in Japan. The isolates grew aerobically at about 65 °C on a solid medium with formation of substrate mycelia; spores were produced singly along the mycelia. These morphological characters resembled those of some type strains of species belonging to the family ‘Thermoactinomycetaceae’, except that aerial mycelia were not formed. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the closest related species to the isolates were members of the family ‘Thermoactinomycetaceae’, but that the isolates formed an independent phylogenetic lineage. Some chemotaxonomic characters of the isolates, such as DNA G+C contents of 58·7–60·3 mol%, MK-7 as the major menaquinone and cellular fatty acid profiles, differed from those of members of the family ‘Thermoactinomycetaceae’. DNA–DNA hybridization showed that the isolates could be divided into two genomic groups, strain H0165T and the other three strains. These results indicated that the four isolates should be classified into two species of a novel genus in the family ‘Thermoactinomycetaceae’, for which the names Planifilum fimeticola gen. nov., sp. nov. (type strain H0165T=ATCC BAA-969T=JCM 12507T) and Planifilum fulgidum sp. nov. (type strain 500275T=ATCC BAA-970T=JCM 12508T) are proposed.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4341-4346 ◽  
Author(s):  
Sugiyono Saputra ◽  
Tomohiro Irisawa ◽  
Mitsuo Sakamoto ◽  
Maki Kitahara ◽  
Sulistiani ◽  
...  

Three strains of anaerobic Gram-stain-negative, short to longer rod-shaped bacteria isolated from the caecum of chicken in Indonesia were studied using a polyphasic taxonomic approach. These strains belonged to the genus Bacteroides, based on sequence analysis of 16S rRNA and hsp60 (groEL) genes, with similarities of 93.2–94.1 and 89.8–90.8 %, respectively, to the closest recognized species, Bacteroides coprocola JCM 17929T. Sugar fermentation and enzyme characteristics, cellular fatty acid profiles, menaquinone profiles and metabolic end products were also investigated. Furthermore, DNA–DNA hybridization studies confirmed that the three novel strains are different from the closest related species. The strains were also found to be distinct from each other on the basis of ribotype profiles. The DNA G+C contents of the three strains were 41.1–41.8 mol%. Based on phenotypic and phylogenetic characteristics, a novel species, Bacteroides caecigallinarum sp. nov., is proposed (type strain C13EG111T = LIPI12-4-Ck773T = JSAT12-4-Ck773T = InaCC B455T = NBRC 110959T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3379-3383 ◽  
Author(s):  
Juan Du ◽  
Yang Liu ◽  
Qiliang Lai ◽  
Chunming Dong ◽  
Yanrong Xie ◽  
...  

An aerobic, Gram-stain-negative, rod-shaped and non-motile bacterium, JS14SB-1T, was isolated from the surface freshwater of the Jiulong River, PR China. Strain JS14SB-1T grew at 15–38 °C (optimum, 28–35 °C), at pH 6.0–9.0 (optimum pH 7.0) and in the presence of 1.0–7.0 % (w/v) NaCl [optimum 3.0–5.0 % (w/v)]. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain JS14SB-1T was affiliated to the genus Kordia, sharing low similarities (95.1–97.1 %) to all type strains of species of this genus. The digital DNA–DNA hybridization (DDH) value between strain JS14SB-1T and the closely related strain Kordia jejudonensis SSK3-3T was 20.70 ± 2.33 % and far below the 70 % DDH value taken as the gold standard for delineation of bacterial species. The major fatty acids were identified as iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids were phosphatidylethanolamine, glycolipid, aminolipid, several unidentified phospholipids and lipids. The predominant menaquinone was MK-6. The G+C content of the genomic DNA was 33.8 mol%. Based on the phenotypic, phylogenetic and chemotaxonomic distinctiveness, strain JS14SB-1T is considered to represent a novel species of the genus Kordia, for which the name Kordia zhangzhouensis sp. nov. is proposed; the type strain is JS14SB-1T ( = MCCC 1A00726T = KCTC 42140T).


2011 ◽  
Vol 61 (3) ◽  
pp. 670-673 ◽  
Author(s):  
Jitsopin Traiwan ◽  
Mi-Hak Park ◽  
Wonyong Kim

The taxonomic position of a Gram-stain-positive, rod-shaped, endospore-forming, facultatively anaerobic bacterial strain, CAU 9324T, isolated from a grassy sandbank was investigated by using a polyphasic approach. Strain CAU 9324T grew optimally at 30 °C and pH 6.0. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The major isoprenoid quinone was menaquinone-7 (MK-7). The polar lipid profile consisted of diphosphatidylglycerol as the major component. The predominant cellular fatty acid was anteiso-C15 : 0. The DNA G+C content of strain CAU 9324T was 48.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strain belonged to the genus Paenibacillus, showing <96.4 % similarity to the type strains of all recognized Paenibacillus species. On the basis of phenotypic, chemotaxonomic and genotypic data, strain CAU 9324T was considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus puldeungensis sp. nov. is proposed. The type strain is CAU 9324T (=KCTC 13718T =CCUG 59189T).


Author(s):  
Nicole Hugouvieux-Cotte-Pattat ◽  
Cécile Jacot des-Combes ◽  
Jérôme Briolay ◽  
Leighton Pritchard

The Pectobacteriaceae family of important plant pathogens includes the genus Dickeya . There are currently 12 described species of Dickeya , although some are poorly characterized at the genomic level. Only two genomes of Dickeya paradisiaca , the type strain CFBP 4178T and strain Ech703, have previously been sequenced. Members of this species are mostly of tropical or subtropical origin. During an investigation of strains present in our laboratory collection we sequenced the atypical strain A3967, registered as CFBP 722, isolated from Solanum lycopersicum (tomato) in the South of France in 1965. The genome of strain A3967 shares digital DNA–DNA hybridization and average nucleotide identity (ANI) values of 68 and 96 %, respectively, with the D. paradisiaca type strain CFBP 4178T. However, ANI analysis showed that D. paradisiaca strains are significantly dissimilar to the other Dickeya species, such that less than one third of their genomes align to any other Dickeya genome. On phenotypic, phylogenetic and genomic grounds, we propose a reassignment of D. paradisiaca to the genus level, for which we propose the name Musicola gen. nov., with Musicola paradisiaca as the type species and CFBP 4178T (NCPPB 2511T) as the type strain. Phenotypic analysis showed differences between strain A3967T and CFBP 4178T, such as for the assimilation of melibiose, raffinose and myo-inositol. These results support the description of two novel species, namely Musicola paradisiaca comb. nov. and Musicola keenii sp. nov., with CFBP 4178T (NCPPB 2511T=LMG 2542T) and A3967T (CFBP 8732T=LMG 31880T) as the type strains, respectively.


2004 ◽  
Vol 54 (4) ◽  
pp. 1393-1399 ◽  
Author(s):  
Bożena Korczak ◽  
Henrik Christensen ◽  
Stefan Emler ◽  
Joachim Frey ◽  
Peter Kuhnert

Sequences of the gene encoding the β-subunit of the RNA polymerase (rpoB) were used to delineate the phylogeny of the family Pasteurellaceae. A total of 72 strains, including the type strains of the major described species as well as selected field isolates, were included in the study. Selection of universal rpoB-derived primers for the family allowed straightforward amplification and sequencing of a 560 bp fragment of the rpoB gene. In parallel, 16S rDNA was sequenced from all strains. The phylogenetic tree obtained with the rpoB sequences reflected the major branches of the tree obtained with the 16S rDNA, especially at the genus level. Only a few discrepancies between the trees were observed. In certain cases the rpoB phylogeny was in better agreement with DNA–DNA hybridization studies than the phylogeny derived from 16S rDNA. The rpoB gene is strongly conserved within the various species of the family of Pasteurellaceae. Hence, rpoB gene sequence analysis in conjunction with 16S rDNA sequencing is a valuable tool for phylogenetic studies of the Pasteurellaceae and may also prove useful for reorganizing the current taxonomy of this bacterial family.


2001 ◽  
Vol 2 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Wolfgang Kraatz ◽  
Ulf Thunberg ◽  
Bertil Pettersson ◽  
Claes Fellström

AbstractDNA was extracted from colonic biopsies of 33 patients with and three without evidence of intestinal spirochetosis (IS) in the large bowel. The biopsies were subjected to PCR. A pair of primers, generating a 207 bp fragment, were designed to detect specifically the 16S rDNA gene ofBrachyspira. PCR products of the expected size were obtained from 33 samples with histologic evidence of IS. The PCR amplicons were used for sequencing. The sequences obtained were aligned to the corresponding 16S rRNA sequences of five type strains ofBrachyspira. The sequences of 23 PCR products were 99–100% identical with the correspond-ingB.aalborgitype strain sequence. Two cases showed 99–100% sequence similarity with the type strain ofB.pilosicoliP43/6/78. Six cases could not be referred to any of the known species ofBrachyspira. Two PCR products gave incomplete sequences.


2007 ◽  
Vol 57 (9) ◽  
pp. 1952-1955 ◽  
Author(s):  
Shoichi Hosoya ◽  
Akira Yokota

A Gram-negative, motile, rod-shaped bacterium (WSF2T) was isolated from coastal seawater of the Boso Peninsula in Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain WSF2T represented a separate lineage within the genus Pseudovibrio. The DNA G+C content of strain WSF2T was 51.7 mol%. DNA–DNA hybridization values between strain WSF2T and the type strains of Pseudovibrio species were significantly lower than those accepted as the phylogenetic definition of a species. Furthermore, some biochemical characteristics indicated that strain WSF2T differed from other Pseudovibrio species. Based on these characteristics, it is proposed that the isolate represents a novel species, Pseudovibrio japonicus sp. nov. The type strain is WSF2T (=IAM 15442T=NCIMB 14279T=KCTC 12861T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2609-2612 ◽  
Author(s):  
Núria Bozal ◽  
M. Jesús Montes ◽  
Elena Mercadé

Two Gram-negative, cold-adapted, aerobic bacteria, designated strains M8T and M6, were isolated from soil collected from the South Shetland Islands. The organisms were rod-shaped, catalase- and oxidase-positive and motile by means of polar flagella. These two psychrotolerant strains grew between −4 and 30 °C. 16S rRNA gene sequence analysis placed strains M8T and M6 within the genus Pseudomonas. DNA–DNA hybridization experiments between the Antarctic isolate M8T and type strains of phylogenetically related species, namely Pseudomonas peli and Pseudomonas anguilliseptica, revealed levels of relatedness of 33 and 37 %, respectively. Strain M6 showed 99 % DNA similarity to strain M8T. Several phenotypic characteristics, together with data on cellular fatty acid composition, served to differentiate strains M8T and M6 from related pseudomonads. On the basis of the polyphasic taxonomic evidence presented in this study, it can be concluded that strains M8T and M6 belong to the same genospecies, representing a novel species of the genus Pseudomonas, for which the name Pseudomonas guineae sp. nov. is proposed. The type strain is M8T (=LMG 24016T=CECT 7231T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2629-2635 ◽  
Author(s):  
Margarita Gomila ◽  
Botho Bowien ◽  
Enevold Falsen ◽  
Edward R. B. Moore ◽  
Jorge Lalucat

Three Gram-negative, rod-shaped, non-spore-forming bacteria (strains CCUG 52769T, CCUG 52770 and CCUG 52771) isolated from haemodialysis water were characterized taxonomically, together with five strains isolated from industrial waters (CCUG 52428, CCUG 52507, CCUG 52575T, CCUG 52590 and CCUG 52631). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these isolates belonged to the class Betaproteobacteria and were related to the genus Pelomonas, with 16S rRNA gene sequence similarities higher than 99 % with the only species of the genus, Pelomonas saccharophila and to Pseudomonas sp. DSM 2583. The type strains of Mitsuaria chitosanitabida and Roseateles depolymerans were their closest neighbours (97.9 and 97.3 % 16S rRNA gene sequence similarity, respectively). Phylogenetic analysis was also performed for the internally transcribed spacer region and for three genes [hoxG (hydrogenase), cbbL/cbbM (Rubisco) and nifH (nitrogenase)] relevant for the metabolism of the genus Pelomonas. DNA–DNA hybridization, major fatty acid composition and phenotypical analyses were carried out, which included the type strain of Pelomonas saccharophila obtained from different culture collections (ATCC 15946T, CCUG 32988T, DSM 654T, IAM 14368T and LMG 2256T), as well as M. chitosanitabida IAM 14711T and R. depolymerans CCUG 52219T. Results of DNA–DNA hybridization, physiological and biochemical tests supported the conclusion that strains CCUG 52769, CCUG 52770 and CCUG 52771 represent a homogeneous phylogenetic and genomic group, including strain DSM 2583, clearly differentiated from the industrial water isolates and from the Pelomonas saccharophila type strain. On the basis of phenotypic and genotypic characteristics, these strains belong to two novel species within the genus Pelomonas, for which the names Pelomonas puraquae sp. nov. and Pelomonas aquatica sp. nov. are proposed. The type strains of Pelomonas puraquae sp. nov. and Pelomonas aquatica sp. nov. are CCUG 52769T (=CECT 7234T) and CCUG 52575T (=CECT 7233T), respectively.


Sign in / Sign up

Export Citation Format

Share Document