scholarly journals Scopolamine-Induced Delirium Promotes Neuroinflammation and Neuropsychiatric Disorder in Mice

Author(s):  
So Yeong Cheon ◽  
Bon-Nyeo Koo ◽  
So Yeon Kim ◽  
Eun Hee Kam ◽  
Junhyun Nam ◽  
...  

Abstract Postoperative delirium is a common neuropsychiatric syndrome resulting a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium models due to their clinical significance, focusing on systematic inflammation and consequent neuroinflammation playing a key role in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium mice model with respect to the neuroinflammatory hypothesis of delirium. Male C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioral tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1ꞵ, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models.Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. The scopolamine-induced delirium mice model successfully showed that analogous neuropsychiatric changes coincides with the neuroinflammatory hypothesis for pathogenesis of delirium.

2020 ◽  
Author(s):  
So Yeong Cheon ◽  
Bon-Nyeo Koo ◽  
So Yeon Kim ◽  
Eun Hee Kam ◽  
Junhyun Nam ◽  
...  

Abstract BackgroundPostoperative delirium is a common neuropsychiatric syndrome resulting in a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium models due to their clinical significance, focusing on systemic inflammation and consequent neuroinflammation playing a key in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium mice model with respect to the neuroinflammatory hypothesis of delirium. MethodsMale C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioural tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1ꞵ, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models.Results Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of the genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. Conclusions The scopolamine-induced delirium mice model successfully showed that analogous neuropsychiatric changes coincide with the neuroinflammatory hypothesis for pathogenesis of delirium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
So Yeong Cheon ◽  
Bon-Nyeo Koo ◽  
So Yeon Kim ◽  
Eun Hee Kam ◽  
Junhyun Nam ◽  
...  

AbstractPostoperative delirium is a common neuropsychiatric syndrome resulting a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium-like models due to their clinical significance, focusing on systematic inflammation and consequent neuroinflammation playing a key role in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium-like mice model with respect to the neuroinflammatory hypothesis of delirium. Male C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioral tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1β, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models. Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. The scopolamine-induced delirium-like mice model successfully showed that analogous neuropsychiatric changes coincides with the neuroinflammatory hypothesis for pathogenesis of delirium.


2003 ◽  
Vol 90 (10) ◽  
pp. 688-697 ◽  
Author(s):  
Andrew Filer ◽  
Ewan Ross ◽  
Margarita Bofill ◽  
Stuart Martin ◽  
Mike Salmon ◽  
...  

SummaryWe investigated the extent to which fibroblasts isolated from diverse tissues differ in their capacity to modulate inflammation by comparing the global gene expression profiles of cultured human fibroblasts from skin, acute and chronically inflamed synovium, lymph node and tonsil. The responses of these fibroblasts to TNF-α, IFN-γ and IL-4 stimulation were markedly different, as revealed by hierarchical cluster analysis and principal component analysis. In the absence of exogenous cytokine, syn-ovial and skin fibroblasts exhibited similar patterns of gene expression. However their transcriptional profiles diverged upon treatment with TNF-α.This proved to be biologically relevant, as TNF-α induced the secretion of different patterns and amounts of IL-6, IL-8 and CCL2 (MCP-1) in the two fibroblast types. Co-culture of skin or synovial fibroblasts with synovial fluid-derived mononuclear cells provided further evidence that these transcriptional differences were functionally significant in an ex vivo setting. Interestingly, the transcriptional response of skin fibroblasts to IL-4 converged with that of TNF-α-treated synovial fibroblasts, suggesting resident tissue fibroblasts and their blood-borne precursors may be imprinted by inflammatory cytokines that are characteristic of different tissues. Our data supports the concept that fibroblasts are heterogeneous, and that they contribute to the tissue-specificity of inflammatory reactions. Fibroblasts are therefore likely to play an active role in the persistence of chronic inflammatory reactions.This publication was partially financed by Serono Foundation for the Advancement of Medical Science.Part of this paper was originally presented at the 2nd International Workshop on New Therapeutic Targets in Vascular Biology from February 6-9, 2003 in Geneva, Switzerland.


2021 ◽  
Author(s):  
Nimrod Bernat ◽  
Rianne Campbell ◽  
Hyungwoo Nam ◽  
Mahashweta Basu ◽  
Tal Odesser ◽  
...  

The ventral pallidum (VP), a major component of the basal ganglia, plays a critical role in motivational disorders. It sends projections to many different brain regions but it is not yet known whether and how these projections differ in their cellular properties, gene expression patterns, connectivity and role in reward seeking. In this study, we focus on four major outputs of the VP - to the lateral hypothalamus (LH), ventral tegmental area (VTA), mediodorsal thalamus (MDT), and lateral habenula (LHb) - and examine the differences between them in 1) baseline gene expression profiles using projection-specific RNA-sequencing; 2) physiological parameters using whole-cell patch clamp; and 3) their influence on cocaine reward using chemogenetic tools. We show that these four VP efferents differ in all three aspects and highlight specifically differences between the projections to the LH and the VTA. These two projections originate largely from separate populations of neurons, express distinct sets of genes related to neurobiological functions, and show opposite physiological and behavioral properties. Collectively, our data demonstrates for the first time that VP neurons exhibit distinct molecular and cellular profiles in a projection-specific manner, suggesting that they represent different cell types.


2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Li Teng ◽  
Laiwan Chan

SummaryTraditional analysis of gene expression profiles use clustering to find groups of coexpressed genes which have similar expression patterns. However clustering is time consuming and could be diffcult for very large scale dataset. We proposed the idea of Discovering Distinct Patterns (DDP) in gene expression profiles. Since patterns showing by the gene expressions reveal their regulate mechanisms. It is significant to find all different patterns existing in the dataset when there is little prior knowledge. It is also a helpful start before taking on further analysis. We propose an algorithm for DDP by iteratively picking out pairs of gene expression patterns which have the largest dissimilarities. This method can also be used as preprocessing to initialize centers for clustering methods, like K-means. Experiments on both synthetic dataset and real gene expression datasets show our method is very effective in finding distinct patterns which have gene functional significance and is also effcient.


2005 ◽  
Vol 289 (4) ◽  
pp. L545-L553 ◽  
Author(s):  
Joseph Zabner ◽  
Todd E. Scheetz ◽  
Hakeem G. Almabrazi ◽  
Thomas L. Casavant ◽  
Jian Huang ◽  
...  

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial chloride channel regulated by phosphorylation. Most of the disease-associated morbidity is the consequence of chronic lung infection with progressive tissue destruction. As an approach to investigate the cellular effects of CFTR mutations, we used large-scale microarray hybridization to contrast the gene expression profiles of well-differentiated primary cultures of human CF and non-CF airway epithelia grown under resting culture conditions. We surveyed the expression profiles for 10 non-CF and 10 ΔF508 homozygote samples. Of the 22,283 genes represented on the Affymetrix U133A GeneChip, we found evidence of significant changes in expression in 24 genes by two-sample t-test ( P < 0.00001). A second, three-filter method of comparative analysis found no significant differences between the groups. The levels of CFTR mRNA were comparable in both groups. There were no significant differences in the gene expression patterns between male and female CF specimens. There were 18 genes with significant increases and 6 genes with decreases in CF relative to non-CF samples. Although the function of many of the differentially expressed genes is unknown, one transcript that was elevated in CF, the KCl cotransporter (KCC4), is a candidate for further study. Overall, the results indicate that CFTR dysfunction has little direct impact on airway epithelial gene expression in samples grown under these conditions.


Author(s):  
Gustavo Deco ◽  
Kevin Aquino ◽  
Aurina Arnatkevičiūtė ◽  
Stuart Oldham ◽  
Kristina Sabaroedin ◽  
...  

AbstractBrain regions vary in their molecular and cellular composition, but how this heterogeneity shapes neuronal dynamics is unclear. Here, we investigate the dynamical consequences of regional heterogeneity using a biophysical model of whole-brain functional magnetic resonance imaging (MRI) dynamics in humans. We show that models in which transcriptional variations in excitatory and inhibitory receptor (E:I) gene expression constrain regional heterogeneity more accurately reproduce the spatiotemporal structure of empirical functional connectivity estimates than do models constrained by global gene expression profiles and MRI-derived estimates of myeloarchitecture. We further show that regional heterogeneity is essential for yielding both ignition-like dynamics, which are thought to support conscious processing, and a wide variance of regional activity timescales, which supports a broad dynamical range. We thus identify a key role for E:I heterogeneity in generating complex neuronal dynamics and demonstrate the viability of using transcriptional data to constrain models of large-scale brain function.


2020 ◽  
Author(s):  
Alexander Calderwood ◽  
Jo Hepworth ◽  
Shannon Woodhouse ◽  
Lorelei Bilham ◽  
D. Marc Jones ◽  
...  

AbstractThe timing of the floral transition affects reproduction and yield, however its regulation in crops remains poorly understood. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. A direct comparison of gene expression over time between species shows little similarity, which could lead to the inference that different gene regulatory networks are at play. However, these differences can be largely resolved by synchronisation, through curve registration, of gene expression profiles. We find that different registration functions are required for different genes, indicating that there is no common ‘developmental time’ to which Arabidopsis and B. rapa can be mapped through gene expression. Instead, the expression patterns of different genes progress at different rates. We find that co-regulated genes show similar changes in synchronisation between species, suggesting that similar gene regulatory sub-network structures may be active with different wiring between them. A detailed comparison of the regulation of the floral transition between Arabidopsis and B. rapa, and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways, even when grown under the same environmental conditions. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa under long days and highlights the importance of registration methods for the comparison of developmental gene expression data.


Author(s):  
Ana M Mesa ◽  
Jiude Mao ◽  
Theresa I Medrano ◽  
Nathan J Bivens ◽  
Alexander Jurkevich ◽  
...  

Abstract Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of homolog 2 (EZH2), is a histone methyltransferase that methylates lysine residue 27, and thereby, suppresses gene expression. EZH2 plays integral role in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNAseq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide the mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.


Author(s):  
Crescenzio Gallo

The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter, the authors examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.


Sign in / Sign up

Export Citation Format

Share Document