scholarly journals Observation of anti-damping spin-orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3

Author(s):  
Mahendra DC ◽  
Ding-Fu Shao ◽  
Vincent Hou ◽  
Patrick Quarterman ◽  
Ali Habiboglu ◽  
...  

Abstract High spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with a ferromagnetic layer show promise for next generation magnetic memory and logic devices. SOTs generated from the in-plane spin polarization along y-axis originated by the spin Hall and Edelstein effects can switch magnetization collinear with the spin polarization in the absence of external magnetic fields. However, an external magnetic field is required to switch the magnetization along x and z-axes via SOT generated by y-spin polarization. Here, we present that the above limitation can be circumvented by unconventional SOT in magnetron-sputtered thin film MnPd3. In addition to the conventional in-plane anti-damping-like torque due to the y-spin polarization, out-of-plane and in-plane anti-damping-like torques originating from z-spin and x-spin polarizations, respectively have been observed at room temperature. The spin torque efficiency (θ_y) corresponding to the y-spin polarization from MnPd3 thin films grown on thermally oxidized silicon substrate and post annealed at 400 ℃ is 0.34 - 0.44 while the spin conductivity (σ_zx^y) is ~ 5.70 – 7.30× 105 ℏ⁄2e Ω-1m-1. Remarkably, we have demonstrated complete external magnetic field-free switching of perpendicular Co layer via unconventional out-of-plane anti-damping-like torque from z-spin polarization. Based on the density functional theory calculations, we determine that the observed x- and z- spin polarizations with the in-plane charge current are due to the low symmetry of the (114) oriented MnPd3 thin films. Taken together, the new material reported here provides a path to realize a practical spin channel in ultrafast magnetic memory and logic devices.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunfeng You ◽  
Hua Bai ◽  
Xiaoyu Feng ◽  
Xiaolong Fan ◽  
Lei Han ◽  
...  

AbstractOut-of-plane spin polarization σz has attracted increasing interests of researchers recently, due to its potential in high-density and low-power spintronic devices. Noncollinear antiferromagnet (AFM), which has unique 120° triangular spin configuration, has been discovered to possess σz. However, the physical origin of σz in noncollinear AFM is still not clear, and the external magnetic field-free switching of perpendicular magnetic layer using the corresponding σz has not been reported yet. Here, we use the cluster magnetic octupole in antiperovskite AFM Mn3SnN to demonstrate the generation of σz. σz is induced by the precession of carrier spins when currents flow through the cluster magnetic octupole, which also relies on the direction of the cluster magnetic octupole in conjunction with the applied current. With the aid of σz, current induced spin-orbit torque (SOT) switching of adjacent perpendicular ferromagnet is realized without external magnetic field. Our findings present a new perspective to the generation of out-of-plane spin polarizations via noncollinear AFM spin structure, and provide a potential path to realize ultrafast high-density applications.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6036
Author(s):  
Nir Sukenik ◽  
Francesco Tassinari ◽  
Shira Yochelis ◽  
Oded Millo ◽  
Lech Tomasz Baczewski ◽  
...  

The spin–spin interactions between chiral molecules and ferromagnetic metals were found to be strongly affected by the chiral induced spin selectivity effect. Previous works unraveled two complementary phenomena: magnetization reorientation of ferromagnetic thin film upon adsorption of chiral molecules and different interaction rate of opposite enantiomers with a magnetic substrate. These phenomena were all observed when the easy axis of the ferromagnet was out of plane. In this work, the effects of the ferromagnetic easy axis direction, on both the chiral molecular monolayer tilt angle and the magnetization reorientation of the magnetic substrate, are studied using magnetic force microscopy. We have also studied the effect of an applied external magnetic field during the adsorption process. Our results show a clear correlation between the ferromagnetic layer easy axis direction and the tilt angle of the bonded molecules. This tilt angle was found to be larger for an in plane easy axis as compared to an out of plane easy axis. Adsorption under external magnetic field shows that magnetization reorientation occurs also after the adsorption event. These findings show that the interaction between chiral molecules and ferromagnetic layers stabilizes the magnetic reorientation, even after the adsorption, and strongly depends on the anisotropy of the magnetic substrate. This unique behavior is important for developing enantiomer separation techniques using magnetic substrates.


2008 ◽  
Vol 22 (12) ◽  
pp. 1923-1932
Author(s):  
JIA LIU ◽  
ZI-YU CHEN

The influence of a perpendicular magnetic field on a bound polaron near the interface of a polar–polar semiconductor with Rashba effect has been investigated. The material is based on a GaAs / Al x Ga 1-x As heterojunction and the Al concentration varying from 0.2 ≤ x ≤ 0.4 is the critical value below which the Al x Ga 1-x As is a direct band gap semiconductor.The external magnetic field strongly altered the ground state binding energy of the polaron and the Rashba spin–orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splitting of the ground state binding energy of the bound polaron. How the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity and the electron area density have been shown in this paper, taking into account the SO coupling. The contribution of the phonons are also considered. It is found that the spin-splitting states of the bound polaron are more stable, and, in the condition of weak magnetic field, the Zeeman effect can be neglected.


2000 ◽  
Vol 36 (8) ◽  
pp. 893-897
Author(s):  
J. G. Vazquez-Luna ◽  
A. Zehe ◽  
M. P. Trujillo-Garcia ◽  
O. Starostenko

Measurement ◽  
2019 ◽  
Vol 131 ◽  
pp. 730-736 ◽  
Author(s):  
Bin Liu ◽  
Luyao He ◽  
Hai Zhang ◽  
Stefano Sfarra ◽  
Henrique Fernandes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document