scholarly journals Structural Design and Tensile Experiment of Connection Node between acrylic and Stainless Steel

Author(s):  
Xiaohui Qian ◽  
Xiaoyan Ma ◽  
Yuekun Heng ◽  
Wei He ◽  
Zhonghua Qin ◽  
...  

Abstract Acrylic are widely used as load-bearing structural parts. In this study, the structural design, finite element analysis (FEA) and tensile experiment of the connection node of the acrylic spherical vessel designed for Jiangmen Underground Neutrino Observation (JUNO) are carried out. The acrylic connection node needs to withstand a tensile load of 90 kN for 20 years, and its ultimate bearing capacity is required to be 6 times the working load. Under working load, the stress of the acrylic structure should be less than 3.5 MPa. In the study, a connection node connecting acrylic and stainless steel is designed. By embedding the steel ring in the acrylic structure to connect with the support rod, the acrylic connection node can withstand high loads. A 1/4 symmetric model of connection node is established, and the FEA method is used to solve nonlinear problems such as material nonlinearity and frictional contact. The results of FEA show that the maximum principle stress of the connection node is about 2.92 MPa. By comparing the stress of the FEA results with the experimental results, the relative difference is 7.24 %, indicating that the FEA results are credible. The experiment results also show that the ultimate tensile load of the connection node can reach 1000 kN, which is about 11 times the working load. The breakdown of the connection node occurs at the sharp corner of the groove instead of the maximum stress point. Through the design, simulation and experiment of the connection node, for the brittle materials such as acrylic, the structure should avoid the defects such as sharp corner.

2000 ◽  
Vol 122 (4) ◽  
pp. 457-461 ◽  
Author(s):  
V. Desikan ◽  
Raju Sethuraman

A method based on linear elastic finite element analysis is presented for stress field determination of elasto-plastic problems. Hencky’s total deformation theory is used to define effective material parameters, which are treated as spatial field variables and considered to be functions of final state of equilibrium stress and material properties. These effective material parameters are obtained in an iterative manner using strain-controlled projection method, arc-length method, and Neuber rule applied on experimental uniaxial tension test curve. Three problems of von Mises material are considered to illustrate the application of the proposed method: a thick-walled cylinder subjected to internal pressure characterized by general work-hardening behavior, a V-notch specimen subjected to remote tensile load having elastic-perfectly plastic behavior, and a rotating disk with material having elastic linear work-hardening behavior. Obtained results for all the cases are compared with standard nonlinear finite element results and are found to be in good agreement. [S0094-9930(00)00104-9]


Author(s):  
James K. Wilkins

A project has been conducted to verify a finite element analysis procedure for studying the nonlinear behavior of 90°, stainless steel, 4 inch schedule 10, butt welding elbows. Two displacement controlled monotonic in-plane tests were conducted, one closing and one opening, and the loads, displacements, and strains at several locations were recorded. Stacked 90° tee rosette gages were used in both tests because of their ability to measure strain over a small area. ANSYS shell element 181 was used in the FEA reconciliations. The FEA models incorporated detailed geometric measurements of the specimens, including the welds, and material stress-strain data obtained from the attached straight piping. Initially, a mesh consisting of sixteen elements arrayed in 8 rings was used to analyze the elbow. The load-displacement correlation was quite good using this mesh, but the strain reconciliation was not. Analysis of the FEA results indicated that the axial and hoop strain gradients across the mid-section of the elbow were very high. In order to generate better strain correlations, the elbow mesh was refined in the mid-section of the elbow to include 48 elements per ring and an additional six rings, effectively increasing the element density by nine times. Using the refined mesh produced much better correlations with the strain data.


Author(s):  
Valentin Mereuta

Abstract: In this work the 3D model of the camshaft was done using Autodesk Inventor version 2021 with the literature data and finite element analysis is performed by applying restrictions and loads conditions, first by the absence of the torque and then by applying the torque. Three materials were analyzed in both situations: Cast Iron, Stainless Steel AISI 202 and Steel Alloy. Following the comparative study for the three materials, it can be specified the importance of the material for the construction of the camshaft. Keywords: Camshaft, Static analysis, Autodesk Inventor


2012 ◽  
Vol 605-607 ◽  
pp. 1547-1551
Author(s):  
Zhan Li Wang ◽  
Qian Liang ◽  
Bang Cheng Zhang

With the development of robot technology, massage robot has attracted fully attention, and the study about robot arm has been a growing interest in the area of massage robot. This article has put forward a new massage robot arm, which uses the chain as the main transfer mode by the requirements of the overall design massage of the robot arm. The design of big arm, shoulder joint, forearm, elbow joint and wrist are introduced. Based on the design requirements, we made some improvements with sprockets, ensuring transmission conditions and meeting the massage requirements. And finite element analysis for the designed arm, results show that the structure design can meet the requirements.


2018 ◽  
Vol 183 ◽  
pp. 02035 ◽  
Author(s):  
Anatoly Bragov ◽  
Alexander Konstantinov ◽  
Leopold Kruszka ◽  
Andrey Lomunov ◽  
Andrey Filippov

The combined experimental and theoretical approach was applied to the study of high-speed deformation and fracture of the 1810 stainless steel. The material tests were performed using a split Hopkinson pressure bar to determine dynamic stress-strain curves, strain rate histories, plastic properties and fracture in the strain rate range of 102 ÷ 104 s-1. A scheme has been realized for obtaining a direct tensile load in the SHPB, using a tubular striker and a gas gun of a simple design. The parameters of the Johnson-Cook material model were identified using the experimental results obtained. Using a series of verification experiments under various types of stress-strain state, the degree of reliability of the identified mathematical model of the behavior of the material studied was determined.


2021 ◽  
Vol 63 (2) ◽  
pp. 157-162
Author(s):  
Ali Rıza Yıldız ◽  
Mehmet Umut Erdaş

Abstract In this paper, a new hybrid Taguchi salp swarm algorithm (HTSSA) has been developed to speed up the optimization processes of structural design problems in industry and to approach a global optimum solution. The design problem is posed for the shape optimization of a seat bracket with a mass objective function and a stress constraint. Objective function evaluations are based on finite element analysis, while the response surface method is used to obtain the equations necessary for objective and constraint functions. Recent optimization techniques such as the salp swarm algorithm, grasshopper optimization algorithm and, Harris hawks optimization algorithm are used to compare the performance of the HTSSA in solving the structural design problem. The results show the hybrid Taguchi salp swarm algorithm’s ability and the superiority of the method developed for optimum product design processes.


2020 ◽  
Vol 62 (10) ◽  
pp. 1025-1032
Author(s):  
Mahmoud Helal ◽  
Elsayed Fathallah

Abstract Diving depth is the criteria for designing the submarine pressure hull meant to achieve a definite collapse depth. In this study, a methodology to optimize a sandwich composite deep pressure hull is presented. Buoyancy factor (BF) minimization is considered as an objective function. The optimization process is achieved by ANSYS parametric design language (APDL). Composites failure criteria and structural stability are considered as constraints. Additionally, sensitivity analyses were conducted to analyze the effects of geometric parameters on optimal structural design. The results showed that, the utilization of a sandwich composite pressure hull for a deep submarine at extreme depths is not safe. Additionally, the results propose that the submarine designed should be able to operate at a maximum diving depth of up to 7500 m.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2556
Author(s):  
Brunilda Cenkoglu ◽  
Nilufer Balcioglu ◽  
Tayfun Ozdemir ◽  
Eitan Mijiritsky

In this study, different prosthetic designs that could be applied instead of advanced surgical techniques in atrophic maxilla were evaluated with finite element analysis. Atrophic posterior maxilla was modeled using computer tomography images and four models were prepared as follows: Model 1 (M1), two implants supporting a three-unit distal cantilever prosthesis; Model 2 (M2), two implants supporting a three-unit conventional fixed partial denture; Model 3 (M3), three implants supporting three connected crowns; and Model 4 (M4), two implants supporting two connected crowns. Implants 4 mm in width and 8 mm or 13 mm in length were used. A linear three-dimensional finite element programme was used for analysis. The maximum principle stress (tensile) and minimum principle stress (compressive) were used to display stress in cortical and cancellous bones. The von Mises criteria were used to evaluate the stress on the implants. M1 was found to be the most risky model. The short dental arch case (M4) revealed the lowest stresses among the models but is not recommended when one more implant can be placed because of the bending forces that could occur at the mesial implant. In M2 and M3, the distal implants were placed bicortically between the crestal and sinus cortical plates, causing a fall of the stresses because of the bicortical stability of these implants.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
J. C. Paredes-Rojas ◽  
C. R. Torres San Miguel ◽  
A. I. Flores Vela ◽  
B. Bravo-Díaz ◽  
C. De la Cruz Alejo ◽  
...  

Mexican industry generates tons of organic wastes that are not used and cause social, environmental, and health problems. The main organic residue which is generated during wood production is the sawdust (biomass). In order to reduce the problems generated by its waste, a prototype to manufacture biofuel pellets was designed by considering a flat die pelletizing machine according to the standard EN 14961-2. The machine design consists of stainless steel 304 and carbon steel to produce pellets of 6 mm and 30 mm in diameter and length, respectively, at 50–100 rpm. The matrix types proposed were radial, spiral, and hexagonal. In order to be constructed quickly, the design is standardized. Results from finite-element analysis indicate that it is possible to manufacture pellets from 50 to 1000 PSI (344.7 kPa to 6894.7 kPa) with this design complying with the standard.


Sign in / Sign up

Export Citation Format

Share Document