scholarly journals Echocardiographic Reference Intervals with Allometric Scaling of 823 Clinically Healthy Rhesus Macaques (Macaca Mulatta)

2020 ◽  
Author(s):  
Yu Ueda ◽  
Laetitia MM Duler ◽  
Kami J Elliot ◽  
Paul-Michael D Sosa ◽  
Jeffrey A Roberts ◽  
...  

Abstract Background: Echocardiography is commonly used for assessing cardiac structure and function in various species including non-human primates. A few previous studies reported normal echocardiographic reference intervals of clinically healthy rhesus macaques under sedation. However, these studies were under-powered, and the techniques were not standardized. In addition, body weight, age, and sex matched reference intervals should be established as echocardiographic measurements are commonly influenced by these variables. The purpose of this study was to establish reference intervals for complete echocardiographic parameters based on a large cohort of clinically healthy rhesus macaques with wide ranges of weight and age distributions using allometric scaling. Results: A total of 823 rhesus macaques (ages 6 months to 31 years old; body weights 1.4 to 22.6 kg) were enrolled. Of these rhesus macaques, 421 were males and 402 were females. They were assessed with a complete echocardiographic examination including structural and functional evaluation under sedation with ketamine hydrochloride. The reference intervals of the key echocardiographic parameters were indexed to weight, age, and sex by calculating the coefficients of the allometric equation Y = aMb. On correlation matrix, body weight, age, sex, and heart rate were significantly correlated with various echocardiographic parameters and some of the parameters were strongly correlated with body weight and age. Multiple regression analysis was also performed to predict various echocardiographic parameters from heart rate, body weight, age and sex. Heart rate and body weight statistically significantly predicted various echocardiographic parameters. Valve regurgitation including tricuspid, aortic, pulmonic, and mitral regurgitations without other cardiac structural and functional abnormalities are common in clinically healthy rhesus macaques under ketamine sedation. Conclusions: In this study, the reference intervals of echocardiographic parameters were established by performing complete echocardiographic examinations on a large number of clinical healthy rhesus macaques. In addition, allometric scaling was performed based on their weight, and further indexed to age and sex. These allometrically scaled reference intervals can be used to accurately evaluate echocardiographic data in rhesus macaques and diagnose structural and functional evidence of cardiac disease.

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Yu Ueda ◽  
Laetitia M. M. Duler ◽  
Kami J. Elliot ◽  
Paul-Michael D. Sosa ◽  
Jeffrey A. Roberts ◽  
...  

Abstract Background Echocardiography is commonly used for assessing cardiac structure and function in various species including non-human primates. A few previous studies reported normal echocardiographic reference intervals of clinically healthy rhesus macaques under sedation. However, these studies were under-powered, and the techniques were not standardized. In addition, body weight, age, and sex matched reference intervals should be established as echocardiographic measurements are commonly influenced by these variables. The purpose of this study was to establish reference intervals for complete echocardiographic parameters based on a large cohort of clinically healthy rhesus macaques with wide ranges of weight and age distributions using allometric scaling. Results A total of 823 rhesus macaques (ages 6 months to 31 years old; body weights 1.4 to 22.6 kg) were enrolled. Of these rhesus macaques, 421 were males and 402 were females. They were assessed with a complete echocardiographic examination including structural and functional evaluation under sedation with ketamine hydrochloride. The reference intervals of the key echocardiographic parameters were indexed to weight, age, and sex by calculating the coefficients of the allometric eq. Y = aMb. On correlation matrix, body weight, age, sex, and heart rate were significantly correlated with various echocardiographic parameters and some of the parameters were strongly correlated with body weight and age. Multiple regression analysis revealed that heart rate and body weight statistically significantly predicted several echocardiographic parameters. Valve regurgitation including tricuspid, aortic, pulmonic, and mitral regurgitations without other cardiac structural and functional abnormalities are common in clinically healthy rhesus macaques under ketamine sedation. Conclusions In this study, the reference intervals of echocardiographic parameters were established by performing complete echocardiographic examinations on a large number of clinical healthy rhesus macaques. In addition, allometric scaling was performed based on their weight, and further indexed to age and sex. These allometrically scaled reference intervals can be used to accurately evaluate echocardiographic data in rhesus macaques and diagnose structural and functional evidence of cardiac disease.


2020 ◽  
pp. 1098612X2094646
Author(s):  
Catherine T Gunther-Harrington ◽  
Ashley N Sharpe ◽  
Karen M Vernau ◽  
Yu Ueda ◽  
Elizabeth A Montgomery ◽  
...  

Objectives Assessment of heart size in kittens is important, and there is a need for reference intervals (RIs) to prevent misinterpretation of cardiomegaly in this patient population. The purpose of this study was to generate RIs for echocardiographic and radiographic quantification of cardiac size in healthy kittens. Methods In total, 88 kittens aged 6–16 weeks were enrolled in this study. Physical examination, radiographic and echocardiographic evaluations were performed without sedation. Thoracic radiographs and echocardiographic images were measured to establish RIs for vertebral heart score (VHS), cardiac thoracic ratio (CTR) and multiple echocardiographic variables. N-terminal pro B-type natriuretic peptide (NT-proBNP) was measured. Statistical correlations between echocardiographic parameters and age, body weight and sex were all evaluated and RIs were generated. Results Low-grade heart murmurs were appreciated in 26/88 kittens (29.5%). Kittens had a median VHS of 9.5 vertebrae (95% RI 8.0–10.9) and a median CTR of 67.2% (95% RI 54.4–79.8%). Measured NT-proBNP levels were comparable to healthy adult cats with a median of 31 pmol/l (upper reference limit 75 pmol/l). Multiple moderate-to-strong correlations between body weight and age with various echocardiographic parameters were observed and allometric scaling was performed for body weight. RIs for echocardiographic parameters were generated based on patient weight using allometric scaling formulas. Tricuspid valve regurgitation was a common finding and was present in 37.5% (n = 33) of the kittens. Conclusions and relevance This study establishes RIs for thoracic radiograph assessment, echocardiography and cardiac biomarkers in kittens, which fills a critical gap in the veterinary literature. The VHS reported in this study is higher than previously reported for adult cats.


1998 ◽  
Vol 32 (2) ◽  
pp. 173-182 ◽  
Author(s):  
G. Hanton ◽  
B. Geffray ◽  
A. Lodola

We have set up M-mode echocardiographic (EC) recording in beagles in our laboratory and generated reference values for EC indicators of left ventricle function and morphology. Additionally we assessed the effects of sex, strain and body weight on these parameters and the correlation between parameters. M-mode EC under two-dimensional guidance in longitudinal section was performed on 59 male and 49 female beagles from Marshall (USA) and 13 males and 13 females from Harlan (France). The following parameters were measured or calculated: left ventricle internal diameter in diastole and systole (LVIDd and LVIDs), left ventricle end diastolic and end systolic and stroke volumes (EDV, ESV and SV), cardiac output and index (CO and CI), fractional shortening (FS), ejection fraction (EF), the thickness of the septum and left ventricle posterior wall in diastole (STd and LVPWd) and systole (STs and LVPWs), the percentage of thickening of the septum and left posterior wall (PST and PWT), and the mean and maximal velocities of the left ventricle posterior wall (PWVm and PWVM). Heart rate (HR) was measured by cardiac auscultation. Marshall dogs have higher left ventricle dimensions but lower amplitude and velocity of contraction than Harlan dogs. There were also statistically significant differences between sexes for a number of EC parameters mainly those relating to the size of the left ventricle walls or cavity in diastole. Overall these differences were explained by the correlation between these parameters and body weight. Heart rate correlated only with PWVm and PWVM. There were positive correlations between PST, PWT and EF or FS and between velocities and FS or EF. EDV correlates negatively with EF, FS, PST or PWT.


2006 ◽  
Vol 3 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Heidrun Gehlen ◽  
Silke Marnette ◽  
Karl Rohn ◽  
Franz Ellendorff ◽  
Peter Stadler

AbstractThe purpose of the present study was to determine the influence of fitness on cardiac function, particularly on left ventricular function parameters. Fifteen healthy ‘three-day event’ warmblood horses were examined at rest and immediately after high-speed treadmill exercise (3% incline, 3 min 1.8 m s−1, 3 min 4 m s−1, 3 min 5 m s−1, 3 min 6 and 3 min 7 m s−1, 1.5 min 8 m s−1). Horses were divided into two groups. Group 1 consisted of nine conditioned horses and group 2 included six unconditioned horses. Left ventricular dimensions and function were acquired using standardized echocardiographic indices. To assess the level of fitness, heart rate and blood lactate concentration were determined at rest and immediately after exercise. The group of conditioned horses showed a significantly lower blood lactate concentration (mean value 2.39 mmol l−1) after high-speed treadmill exercise than did the group of unconditioned horses (mean value 3.81 mmol l−1), which clearly revealed the difference in fitness between the two groups. During exercise the heart rate was not significantly different between both groups. Only in the recovery phase did the trained horses show a significant faster decrease in heart rate than did the untrained horses. Mean heart rate during echocardiography immediately after exercise (within the first 2 min) was 105 bpm in the group of trained horses and 113 bpm in the group of untrained horses.Within each group of horses, several echocardiographic parameters differed significantly between resting values and values after treadmill exercise. Particularly, in the group of trained horses, 17 out of 30 echocardiographic parameters (most diastolic) differed significantly between rest and exercise. In the group of untrained horses, only six out of 30 parameters were significantly different. At rest, left ventricular diameter at the apex cordis, left ventricular free wall at papillary muscle level, left ventricular volume and stroke volume, as well as fractional shortening (at the apex cordis and at papillary muscle level) were significantly different between both groups. After treadmill exercise comparison of echocardiographic parameters of the conditioned to those of the unconditioned animals showed no significant differences. In the present study, data have been provided for stress echocardiography in conditioned and unconditioned warmblood horses without any disorders of the cardiovascular system.


1984 ◽  
Vol 247 (4) ◽  
pp. H495-H507 ◽  
Author(s):  
L. E. Ford

The question of the proper size denominator for metabolic indices is addressed. Metabolic rate among different species is proportional to the 3/4 power of body weight, not surface area. Muscle power also varies with the 3/4 power of weight, suggesting that metabolic rate is determined mainly by muscle power. Power-to-weight ratio, specific metabolic rate, and a number of metabolic periods, including heart rate, all vary inversely with the 1/4 power of body weight. Thus the relative times required for physiological and pathological processes in different species may be estimated from the average resting heart rate for the species. There are not many small humans among athletic record holders in events involving acceleration and hill climbing, as would be expected if they had higher power-to-weight ratios. Thus the relationship between size and metabolic rate in different species should not be applied within the single species of humans. Evidence is reviewed showing that basal metabolic rate in humans is determined mainly by lean body mass.


Sports ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 51
Author(s):  
Daniel Fleckenstein ◽  
Olaf Ueberschär ◽  
Jan C. Wüstenfeld ◽  
Peter Rüdrich ◽  
Bernd Wolfarth

Lower body positive pressure treadmills (LBPPTs) as a strategy to reduce musculoskeletal load are becoming more common as part of sports conditioning, although the requisite physiological parameters are unclear. To elucidate their role, ten well-trained runners (30.2 ± 3.4 years; VO2max: 60.3 ± 4.2 mL kg−1 min−1) ran at 70% of their individual velocity at VO2max (vVO2max) on a LBPPT at 80% body weight support (80% BWSet) and 90% body weight support (90% BWSet), at 0%, 2% and 7% incline. Oxygen consumption (VO2), heart rate (HR) and blood lactate accumulation (LA) were monitored. It was found that an increase in incline led to increased VO2 values of 6.8 ± 0.8 mL kg−1 min−1 (0% vs. 7%, p < 0.001) and 5.4 ± 0.8 mL kg−1 min−1 (2% vs. 7%, p < 0.001). Between 80% BWSet and 90% BWSet, there were VO2 differences of 3.3 ± 0.2 mL kg−1 min−1 (p < 0.001). HR increased with incline by 12 ± 2 bpm (0% vs. 7%, p < 0.05) and 10 ± 2 bpm (2% vs. 7%, p < 0.05). From 80% BWSet to 90% BWSet, HR increases of 6 ± 1 bpm (p < 0.001) were observed. Additionally, LA values showed differences of 0.10 ± 0.02 mmol l−1 between 80% BWSet and 90% BWSet. Those results suggest that on a LBPPT, a 2% incline (at 70% vVO2max) is not yet sufficient to produce significant physiological changes in VO2, HR and LA—as opposed to running on conventional treadmills, where significant changes are measured. However, a 7% incline increases VO2 and HR significantly. Bringing together physiological and biomechanical factors from previous studies into this practical context, it appears that a 7% incline (at 80% BWSet) may be used to keep VO2 and HR load unchanged as compared to unsupported running, while biomechanical stress is substantially reduced.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
O Itzhaki Ben Zadok ◽  
D Leshem-Lev ◽  
T Ben-Gal ◽  
A Hamdan ◽  
N Schamroth-Pravda ◽  
...  

Abstract Background Endothelial microvascular dysfunction is a known mechanism of injury in cardiac amyloidosis (CA), but evidence regarding the level and function of endothelial progenitor cells (EPCs) in patients with CA is lacking. Methods Study population included patients with light-chain or transthyretin (ATTR) CA. Patients with diagnosed heart failure and preserved ejection fraction (HFpEF) without monoclonal gammopathy and a 99mTc-DPD scan incompatible with TTR were used as controls. Blood circulating EPCs were assessed quantitatively by the expression of VEGFR-2(+), CD34(+) and CD133(+) using flow cytometry, and functionally by the formation of colony forming units (CFUs). MTT assay was used to demonstrate cell viability. Tests were repeated 3 months following the initiation of amyloid-suppressive therapies (either ATTR-stabilizer or targeted chemotherapy) in CA patients. Results Our preliminary cohort included 14 CA patients (median age 74 years, 62% ATTR CA). Patients with CA vs. patients with HFpEF (n=8) demonstrated lower expression of CD34(+)/VEGFR-2(+) cells [0.51% (IQR 0.4, 0.7) vs. 1.03% (IQR 0.6, 1.4), P=0.043] and CD133(+)/VEGFR-2(+) cells [0.35% (IQR 0.23, 0.52) to 1.07% (IQR 0.6, 1.5), P=0.003]. Functionally, no differences were noted between groups. Following the initiation of amyloid-suppressive therapies in CA patients, we observed the up-regulation of CD34(+)/VEGFR-2(+) cells [2.47% (IQR 2.1, 2.7), P&lt;0.001] and CD133(+)/VEGFR-2(+) cells [1.38% (IQR 1.1, 1.7), P=0.003]. Moreover, functionally, active EPCs were evident microscopically by their ability to form colonies (from 0.5 CFUs [IQR 0, 1.5) to 2 CFUs (IQR 1, 3.5), P=0.023]. EPCs' viability was demonstrated by an MTT assay [0.12 (IQR 0.04, 0.12) to 0.24 (IQR 0.16, 0.3), p=0.014]. Conclusions These preliminary results demonstrate reduced EPCs levels in CA patients indicating significant microvascular impairment. Amyloid-targeted therapies induce the activation of EPCs, thus possibly promoting endothelial regeneration. These findings may represent a novel mechanism of action of amyloid-suppressive therapies EPCs in CA patients and during therapy Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document