scholarly journals Multi-scale CO2

Author(s):  
Xiaomeng Gu ◽  
Andrew Viggo Metcalfe ◽  
Gary Glonek

Abstract Five time series of estimated atmospheric CO 2 with sampling intervals ranging from 0.5 million years to the relatively high frequency of one week are analysed. The yearly series shows a clear increasing trend since the beginning of the first Industrial Revolution around 1760. The weekly series shows a clear increasing trend and also seasonal variation. In both cases, the trend is fitted by a conceptual model that consists of a baseline value with an exponential trend superimposed. For the weekly series, the seasonal variation is modelled as an exponential of a sum of sine and cosine terms. The deviations from these deterministic models are treated as detrended and deseasonalised time series.Then,threesub-categoriesof autoregressive integrated moving average (ARIMA) models are fitted to the five time series: ARMA models which are stationary; FARIMA models which are stationary but have long memory and are fractal processes, and ARIMA models which are variations on a random walk and so non-stationary in the variance.The FARIMA and ARIMA models provide better fits to the data than the corresponding ARMA models. All the fitted models are close to the boundary of stability, and are consistent with claims that climate change due to an increase in atmospheric CO 2 may not quickly be reversed even if CO 2 emissions are stopped.

2019 ◽  
Vol 147 ◽  
Author(s):  
C. W. Tian ◽  
H. Wang ◽  
X. M. Luo

AbstractSeasonal autoregressive-integrated moving average (SARIMA) has been widely used to model and forecast incidence of infectious diseases in time-series analysis. This study aimed to model and forecast monthly cases of hand, foot and mouth disease (HFMD) in China. Monthly incidence HFMD cases in China from May 2008 to August 2018 were analysed with the SARIMA model. A seasonal variation of HFMD incidence was found from May 2008 to August 2018 in China, with a predominant peak from April to July and a trough from January to March. In addition, the annual peak occurred periodically with a large annual peak followed by a relatively small annual peak. A SARIMA model of SARIMA (1, 1, 2) (0, 1, 1)12 was identified, and the mean error rate and determination coefficient were 16.86% and 94.27%, respectively. There was an annual periodicity and seasonal variation of HFMD incidence in China, which could be predicted well by a SARIMA (1, 1, 2) (0, 1, 1)12 model.


2016 ◽  
Vol 63 (4) ◽  
Author(s):  
Apu Das ◽  
Nalini Ranjan Kumar ◽  
Prathvi Rani

This paper analysed growth and instability in export of marine products from India with an attempt to forecast the total export quantity of marine products from the country. The compound growth rates and instability indices of marine products export from India were estimated for major importing countries viz., Japan, USA, European Union, South-east Asia and Middle East; as more than 80% of the marine products export from India destines to these markets. The study revealed high compound growth rate and low instability in case of selected countries. The study also revealed that India’s marine products export concentrated mainly to those countries, which were falling in less desirable or least desirable category which has affected export performance of the country. Forecast of India’s marine products export was done by fitting univariate Auto Regressive Integrated Moving Average (ARIMA) models. ARIMA (1, 1, 0) was found suitable for modelling marine products export from India. The results of ARIMA model indicated increasing trend in export of Indian marine products. This calls for serious attention by policy makers to identify competitive and stable market destinations for marine products export which could help in harnessing the potential of marine products export from India.


Forecasting ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 121-134 ◽  
Author(s):  
Jason W. Miller

The trucking sector in the United States is a $700 billion plus a year industry and represents a large percentage of many firms’ logistics spend. Consequently, there is interest in accurately forecasting prices for truck transportation. This manuscript utilizes the autoregressive integrated moving average (ARIMA) methodology to develop forecasts for three time series of monthly archival trucking prices obtained from two public sources—the Bureau of Labor Statistics (BLS) and Truckstop.com. BLS data cover January 2005 through August 2018; Truckstop.com data cover January 2015 through August 2018. Different ARIMA models closely approximate the observed data, with coefficients of variation of the root mean-square deviations being 0.007, 0.040, and 0.048. Furthermore, the estimated parameters map well onto dynamics known to operate in the industry, especially for data collected by the BLS. Theoretical and practical implications of these findings are discussed.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 324 ◽  
Author(s):  
Dabuxilatu Wang ◽  
Liang Zhang

Autoregressive moving average (ARMA) models are important in many fields and applications, although they are most widely applied in time series analysis. Expanding the ARMA models to the case of various complex data is arguably one of the more challenging problems in time series analysis and mathematical statistics. In this study, we extended the ARMA model to the case of linguistic data that can be modeled by some symmetric fuzzy sets, and where the relations between the linguistic data of the time series can be considered as the ordinary stochastic correlation rather than fuzzy logical relations. Therefore, the concepts of set-valued or interval-valued random variables can be employed, and the notions of Aumann expectation, Fréchet variance, and covariance, as well as standardized process, were used to construct the ARMA model. We firstly determined that the estimators from the least square estimation of the ARMA (1,1) model under some L2 distance between two sets are weakly consistent. Moreover, the justified linguistic data-valued ARMA model was applied to forecast the linguistic monthly Hang Seng Index (HSI) as an empirical analysis. The obtained results from the empirical analysis indicate that the accuracy of the prediction produced from the proposed model is better than that produced from the classical one-order, two-order, three-order autoregressive (AR(1), AR(2), AR(3)) models, as well as the (1,1)-order autoregressive moving average (ARMA(1,1)) model.


2021 ◽  
Vol 17 (1) ◽  
pp. 19-25
Author(s):  
Virendra N. Barai ◽  
Rohini M. Kalunge

The long-term behaviour of rainfall is necessary to study over space with different time series viz., annual, monthly and weekly as it is one of the most significant climatic variables. Rainfall trend is an important tool which assesses the impact of climate change and provides direction to cope up with its adverse effects on the agriculture. Several studies have been performed to establish the pattern of rainfall over various time periods for different areas that can be used for better agricultural planning, water supply management, etc. Consequently, the present report, entitled “Trend analysis of rainfall in Ahmednagar district of Maharashtra,” was carried out. 13 tahsils of the district of Ahmednagar were selected to carry out trend analysis. The daily rainfall data of 33 years (1980- 2012) of all stations has been processed out study the rainfall variability. The Mann Kendall (MK) Test, Sen’s slope method, moving average method and least square method were used for analysis. The statistical analysis of whole reference time series data highlighted that July and August month contributes highest amount of rainfall at all tahsils. Regarding trend in annual rainfall, these four methods showed increasing trend at most of the tahsils whereas a decreasing trend only at Shrigonda tahsil. For monthly trend analysis, Kopargaon, Newasa, Shevgaon and Shrirampur tahsils showed an increasing trend during July. During August and September month, most of the tahsils i.e. Kopargaon, Nagar, Parner and Sangamner showed increasing trends, whereas in June, only Shrigonda tahsil showed decreasing trend.


Corona virus disease (COVID -19) has changed the world completely due to unavailability of its exact treatment. It has affected 215 countries in the world in which India is no exception where COVID patients are increasing exponentially since 15th of Feb. The objective of paper is to develop a model which can predict daily new cases in India. The autoregressive integrated moving average (ARIMA) models have been used for time series prediction. The daily data of new COVID-19 cases act as an exogenous variable in this framework. The daily data cover the sample period of 15th February, 2020 to 24th May, 2020. The time variable under study is a non-stationary series as 𝒚𝒕 is regressed with 𝒚𝒕−𝟏 and the coefficient is 1. The time series have clearly increasing trend. Results obtained revealed that the ARIMA model has a strong potential for short-term prediction. In PACF graph. Lag 1 and Lag 13 is significant. Regressed values implies Lag 1 and Lag 13 is significant in predicting the current values. The model predicted maximum COVID-19 cases in India at around 8000 during 5thJune to 20th June period. As per the model, the number of new cases shall start decreasing after 20th June in India only. The results will help governments to make necessary arrangements as per the estimated cases. The limitation of this model is that it is unable to predict jerks on either lower or upper side of daily new cases. So, in case of jerks re-estimation will be required.


2019 ◽  
Vol 11 (6) ◽  
pp. 1764 ◽  
Author(s):  
Gavin Boyd ◽  
Dain Na ◽  
Zhong Li ◽  
Spencer Snowling ◽  
Qianqian Zhang ◽  
...  

Autoregressive Integrated Moving Average (ARIMA) is a time series analysis model that can be dated back to 1955. It has been used in many different fields of study to analyze time series and forecast future data points; however, it has not been widely used to forecast daily wastewater influent flow. The objective of this study is to explore the possibility for wastewater treatment plants (WWTPs) to utilize ARIMA for daily influent flow forecasting. To pursue the objective confidently, five stations across North America are used to validate ARIMA’s performance. These stations include Woodward, Niagara, North Davis, and two confidential plants. The results demonstrate that ARIMA models can produce satisfactory daily influent flow forecasts. Considering the results of this study, ARIMA models could provide the operating engineers at both municipal and rural WWTPs with sufficient information to run the stations efficiently and thus, support wastewater management and planning at various levels within a watershed.


Author(s):  
Rongtao Sun ◽  
YangQuan Chen ◽  
Qianru Li

The elevation of Great Salt Lake (GSL) has a great impact on the people of Utah. The flood of GSL in 1982 has caused a loss of millions of dollars. Therefore, it is very important to predict the GSL levels as precisely as possible. This paper points out the reason why conventional methods failed to describe adequately the rise and fall of the GSL levels — the long-range dependence (LRD) property. The LRD of GSL elevation time series is characterized by some most commonly used Hurst parameter estimation methods in this paper. Then, according to the revealed LRD, the autoregressive fractional integrated moving average (ARFIMA) model is applied to analyze the data and predict the future levels. We have shown that the prediction results has a better performance compared to the conventional ARMA models.


2020 ◽  
Vol 71 (4) ◽  
pp. 542
Author(s):  
Karina L. Ryan ◽  
Denny Meyer

Quantitative models that predict stock abundance can inform stock assessments and adaptive management that allows for less stringent controls when abundance is high and environmental conditions are suitable, or tightening controls when abundance is low and environmental conditions are least suitable. Absolute estimates of stock abundance are difficult and expensive to obtain, but data from routine reporting in commercial fisheries logbooks can provide an indicator of stock status. Autoregressive integrated moving average (ARIMA) models were constructed using catch per unit effort (CPUE) from commercial fishing in Port Phillip Bay from 1978–79 to 2009–10. Univariate and multivariate models were compared for short-lived species (Sepioteuthis australis), and species represented by 1–2 year-classes (Sillaginodes punctatus) and 5–6 year-classes (Chrysophrys auratus). Simple transfer models incorporating environmental variables produced the best predictive models for all species. Multivariate ARIMA models are dependent on the availability of an appropriate time series of explanatory variables. This study demonstrates an application of time series methods to predict monthly CPUE that is relevant to fisheries for species that are short lived or vulnerable to fishing during short phases in their life history or where high intra-annual variation in stock abundance occurs through environmental variability.


Sign in / Sign up

Export Citation Format

Share Document