scholarly journals miR-96 Regulates Liver Tumor-Initiating Cells Expansion and Sorafenib Resistance

2020 ◽  
Author(s):  
Yonggang Huang ◽  
Jin Zhang ◽  
Wei Dong ◽  
Huiping Peng ◽  
Maolin Gu ◽  
...  

Abstract Background Liver tumor-initiating cells (T-ICs) contribute to tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver T-ICs remains unclear. Methods Real-time PCR was used to detect the expression of miR-96 in liver tumor-initiating cells (T-ICs). The impact of miR-96 on liver T-ICs expansion was investigated both in vivo and in vitro . The correlation between miR-96 expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results Our finding shows that miR-96 is upregulated in liver T-ICs. Functional studies revealed that forced miR-96 promotes liver T-ICs self-renewal and tumorigenesis. Conversely, knockdown miR-96 inhibits liver T-ICs self-renewal and tumorigenesis. Mechanistically, miR-96 downregulates SOX6 via its mRNA 3’UTR in liver T-ICs. Furthermore, the miR-96 expression determines the responses of hepatoma cells to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-96 may predict sorafenib benefits in HCC patients. Conclusion Our findings revealed the crucial role of the miR-96 in liver T-ICs expansion and sorafenib response, rendering miR-96 as an optimal target for the prevention and intervention of HCC.

2020 ◽  
Author(s):  
Shuping Qu ◽  
Xiaobing Zhang ◽  
Hengwei Fan ◽  
Yue Wu ◽  
Jian Zhai ◽  
...  

Abstract Background: Increasing evidence shows that liver tumor-initiating cells (T-ICs) closely associated with the progression, metastasis, recurrence and chemo-resistance of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver T-ICs remains unclear. The purpose of our study was to explore the role of miR-361-3p in the expansion of liver T-ICs and the potential molecular mechanism.Results: Flow cytometry analysis was performed to isolate CD24+, CD133+ or EpCAM+ cells from primary HCC cells or HCC cell lines. Real-time PCR was used to detect the expression of miR-361-3p in liver T-ICs. The impact of miR-361-3p on liver T-ICS expansion was investigated both in vivo and in vitro. The correlation between miR-361-3p expression and TACE (transcatheter arterial chemoembolization) or sorafenib benefits in HCC was evaluated in patient cohorts. miR-361-3p expression is upregulated in liver T-ICs. Knockdown of miR-361-3p impairs the self-renewal and tumorigenicity liver T-ICs. Conversely, forced miR-361-3p expression enhances the self-renewal and tumorigenicity liver T-ICs. Mechanistically, miR-361-3p directly targets SOX1 via binding its 3’-UTR in liver T-ICs. Moreover, miR-361-3p knockdown hepatoma cells are more sensitive to cisplatin or sorafenib treatment. Clinical cohort analysis demonstrates that miR-361-3p low HCC patients are benefited from TACE or sorafenib treatment. Conclusions: Our findings revealed the crucial role of the miR-361-3p in liver T-IC expansion and TACE or sorafenib response, rendering miR-361-3p an optimal target for the prevention and intervention in HCC.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qing Xia ◽  
Tao Han ◽  
Pinghua Yang ◽  
Ruoyu Wang ◽  
Hengyu Li ◽  
...  

Background. MicroRNAs (miRNAs) play a critical role in the regulation of cancer stem cells (CSCs). However, the role of miRNAs in liver CSCs has not been fully elucidated. Methods. Real-time PCR was used to detect the expression of miR-miR-28-5p in liver cancer stem cells (CSCs). The impact of miR-28-5p on liver CSC expansion was investigated both in vivo and in vitro. The correlation between miR-28-5p expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results. Our data showed that miR-28-5p was downregulated in sorted EpCAM- and CD24-positive liver CSCs. Biofunctional investigations revealed that knockdown miR-28-5p promoted liver CSC self-renewal and tumorigenesis. Consistently, miR-28-5p overexpression inhibited liver CSC’s self-renewal and tumorigenesis. Mechanistically, we found that insulin-like growth factor-1 (IGF-1) was a direct target of miR-28-5p in liver CSCs, and the effects of miR-28-5p on liver CSC’s self-renewal and tumorigenesis were dependent on IGF-1. The correlation between miR-28-5p and IGF-1 was confirmed in human HCC tissues. Furthermore, the miR-28-5p knockdown HCC cells were more sensitive to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-28-5p may predict sorafenib benefits in HCC patients. Conclusion. Our findings revealed the crucial role of the miR-28-5p in liver CSC expansion and sorafenib response, rendering miR-28-5p an optimal therapeutic target for HCC.


2020 ◽  
Author(s):  
Montserrat Lara-Velazquez ◽  
Natanael Zarco ◽  
Anna Carrano ◽  
Jordan Phillipps ◽  
Emily S Norton ◽  
...  

Abstract Background Glioblastomas (GBMs) are the most common primary brains tumors in adults with almost 100% recurrence rate. Patients with lateral ventricle proximal GBMs (LV-GBMs) exhibit worse survival compared to distal locations for reasons that remain unknown. One potential explanation is the proximity of these tumors to the cerebrospinal fluid (CSF) and its contained chemical cues that can regulate cellular migration and differentiation. We therefore investigated the role of CSF on GBM gene expression and the role of a CSF-induced gene, SERPINA3, in GBM malignancy in vitro and in vivo. Methods We utilized patient-derived CSF and primary cultures of GBM brain tumor initiating cells (BTICs). We determined the impact of SERPINA3 expression in glioma patients using TCGA database. SERPINA3 expression changes were evaluated at both the mRNA and protein levels. The effects of knockdown (KD) and overexpression (OE) of SERPINA3 on cell behavior were evaluated by transwell assay (for cell migration), and alamar blue and Ki67 (for viability and proliferation respectively). Stem cell characteristics on KD cells were evaluated by differentiation and colony formation experiments. Tumor growth was studied by intracranial and flank injections. Results GBM CSF induced a significant increase in BTIC migration accompanied by upregulation of the SERPINA3 gene. In patient samples and TCGA data we observed SERPINA3 to correlate directly with brain tumor grade and indirectly with GBM patient survival. Silencing of SERPINA3 induced a decrease in cell proliferation, migration, invasion, and stem cell characteristics, while SERPINA3 overexpression increased cell migration. In vivo, mice orthotopically-injected with SERPINA3 KD BTICs showed increased survival. Conclusions SERPINA3 plays a key role in GBM malignancy and its inhibition results in a better outcome using GBM preclinical models.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 800-800
Author(s):  
Sonia Cellot ◽  
Jana Krosl ◽  
Keith Humphries ◽  
Guy Sauvageau

Abstract We previously reported the generation of pluripotent and ultracompetitive HSCs through modulation of Hoxb4 and Pbx1 levels. These Hoxb4hiPbx1lo HSCs display a tremendous regenerative potential, yet they are still fully responsive to in vivo regulatory signals that control stem cell pool size (20 000 HSCmouse) and differentiation pathways. Further work in our laboratory attempted to circumvent these physiological constraints by expanding Hoxb4hiPbx1lo transduced HSCs in vitro, and hence revealing their intrinsic expansion potential. Independent experiments were performed where primary mouse BM cells were co-infected with retroviruses encoding antisense Pbx1 cDNA plus YFP, and Hoxb4 plus GFP (double gene transfer ranged between 20–50%). Hoxb4hiPbx1lo HSCs measured using the CRU assay expanded by 105-fold during a 12 day in vitro culture. Following serial transplantations, these cells displayed an additional 4–5 log expansion in vivo. Total stem cell content per animal remained within normal limits. Southern blot analyses of proviral integrations showed that the expansion was polyclonal, and analyses of individually expanded clones provided a molecular proof of in vitro self-renewal (SR). This unprecedented level of HSC expansion in such a short time course (105-fold in 12 days) implies an absolute HSC doubling time of approximately 17 hours in our culture, raising the possibility that virtually all dividing HSCs undergo self-renewal. This analysis prompted us to dissect the impact of Hoxb4 on cell proliferation versus cell fate (SR?). When analyzed during the period of maximal HSC expansion, the cell cycle distribution of Sca+ or Sca+Lin− cells were comparable between the cultures initiated with neo control versus Hoxb4 BM cells (CTL vs Hoxb4: G0/G1: 66% vs 83%; S: 15% vs 9%; G2/M: 18% vs 7%). Correspondingly, CFSE tracking studies confirmed the identical, or even lower, number of cellular divisions in Sca+ cells isolated from cultures initiated with Hoxb4 versus neo transduced cells. Annexin V studies precluded protection from apoptosis as the major mechanism to increase HSC numbers since similar results (3–10% positive cells) were observed in the Hoxb4 versus neo-transduced cells. In summary, our studies support the emerging concept that distinct molecular pathways regulate cell proliferation and self-renewal, suggesting that Hoxb4 + antisense Pbx1 predominantly triggers self-renewal over HSC proliferation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3884-3884
Author(s):  
Marieke Goedhart ◽  
Anne Cornelissen ◽  
Carlijn Kuijk ◽  
Sulima Geerman ◽  
Fernanda Pascutti ◽  
...  

Abstract Maintenance of hematopoietic stem cells (HSCs) and regulation of their quiescence and self-renewal is critical for maintaining a lifelong supply of blood cells. The ability of HSCs to stay quiescent is thought to depend on their specific niche in the bone marrow (BM). Mesenchymal stromal cells (MSC) in the BM are multipotent stem cells that form part of the vascular HSC niche and provide micro-environmental support to HSCs both in vivo and upon expansion ex vivo. Culture-expanded MSCs also exhibit immunomodulatory properties that can be enhanced by pre-treatment with interferon-gamma (IFN-γ). BM MSC are thus attractive candidates for cellular therapy after hematopoietic stem cell transplantation, for promoting rapid hematopoietic recovery and reducing the incidence or severity of graft versus host disease. Although IFN-γ pre-treatment can improve the immunomodulatory properties of MSCs, elevated IFN-γ levels have also been associated with anemia and BM failure in multiple chronic inflammatory diseases. While the impact of IFN-γ on HSC has been elucidated in recent years, it remains largely unknown whether IFN-γ can also influence hematopoietic support by BM stromal cells. In this study, we aim to elucidate the impact of IFN-γ on hematopoietic support of BM MSC. We show that in vitro expansion of primary BM MSC cultures from healthy donors was significantly reduced in the presence of IFN-γ, and this effect could be reproduced in the BM stromal cell line MS-5. Concurrently, IFN-γ diminished the clonal capacity of BM MSC, as measured by CFU-F assays. In addition, BM MSC that were pre-stimulated with IFN-γ produced significantly lower levels of CXCL12, suggesting a loss of hematopoietic support potential. Indeed, support of CD34+ hematopoietic stem and progenitor cells (HSPC) in a co-culture assay was greatly reduced in when MSC were pre-treated with IFN-γ. To determine the impact of IFN-γ on BM MSC in vivo, we investigated the BM stromal compartment of IFN-γ AU-rich element deleted (ARE-Del) mice, which constitutively express IFN-γ in steady state conditions. FACS analysis revealed a remodeling of the BM stromal compartment in ARE-Del mice compared to littermate controls, with significantly fewer MSCs, identified as CD45-Ter119-CD31-CD51+PDGFRa+ cells. Numbers of other stromal cell subsets, such as osteoblasts and fibroblasts, were not altered. The reduction of BM MSC in ARE-Del mice coincided with a loss of quiescence in HSCs; only 35% of long term HSC (LT-HSC) in ARE-Del mice were quiescent, compared to 70% in WT mice, as determined by Ki-67 staining. Loss of quiescence in LT-HSC did not lead to increased self-renewal, but rather induced increased differentiation towards short-term HSC and multi-potent progenitors. We then sorted LT-HSC from WT and ARE-Del mice and performed in vitro HSC culture assays in the absence of IFN-γ. Absolute numbers of LT-HSC were rapidly decreased in ARE-Del compared to WT cultures after 3 and 7 days of HSC culture, while numbers of more differentiated progenitors were increased. These data indicate that an IFN-γ-mediated loss of BM MSC in ARE-Del mice leads to loss of quiescent LT-HSCs and induces a tendency towards HSC differentiation over self-renewal. In conclusion, we have shown that IFN-γ has a negative impact on expansion and hematopoietic support of BM MSC in vitro and in vivo across species. Although IFN-γ treatment enhances the immunomodulatory function of MSCs in a clinical setting, it is obvious from our data that IFN-γ impairs their HSC supporting function. These data also provide more insight in the underlying mechanism by which IFN-γ contributes to the pathogenesis of anemia and BM failure. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Jing Ge ◽  
Tao Han ◽  
Lili Shan ◽  
Jing Na ◽  
Ya Li ◽  
...  

Abstract Background Ovarian cancer (OC) is one of the most common malignant tumors in the world. The prognosis of OC remains poor due to the advanced stage and distant metastasis at the time of diagnosis. Recently, a novel lncRNA, THOR (testis-associated highly conserved oncogenic long non-coding RNA), was characterized in human cancers and shown to exhibit an oncogenic role. However, the role of THOR in OC was still unknown.Methods RT-PCR and western blot analysis were used to detect the expression of THOR and p-STAT3. The impact of THOR on OC proliferation, metastasis and self-renew was investigated in vitro and in vivo . The prognostic value of THOR was determined in OC patient cohorts.Results In this study, our results found that THOR was markedly upregulated in human OC tissues and predict the poor prognosis of OC patients. THOR knockdown resulted in significant inhibition of the growth, metastasis and self-renewal of OC cells. Mechanistically, THOR drives OC cell progression via the STAT3 signaling. Moreover, the specific STAT3 inhibitor S3I-201 diminished the discrepancy in the growth, metastatic and self-renewal capacity between THOR-silenced OC cells and control cells, which further confirmed that STAT3 was required in THOR-driven OC cells progression.Conclusion Our findings revealed that THOR could promote OC cells growth, metastasis and self-renew by activating STAT3 signaling and may be a good predictive factor and therapeutic target.


2020 ◽  
Author(s):  
Jing Ge ◽  
Tao Han ◽  
Lili Shan ◽  
Jing Na ◽  
Ya Li ◽  
...  

Abstract Background: Ovarian cancer (OC) is one of the most common malignant tumors in the world. The prognosis of OC remains poor due to the advanced stage and distant metastasis at the time of diagnosis. Recently, a novel lncRNA, THOR (testis-associated highly conserved oncogenic long non-coding RNA), was characterized in human cancers and shown to exhibit an oncogenic role. However, the role of THOR in OC remains unclear. Methods: RT-PCR and western blot analysis were used to detect the expression of THOR, p-STAT3 and IL-6. The impact of THOR on OC proliferation, metastasis and self-renewal was investigated in vitro and in vivo. The prognostic value of THOR was determined in OC patient cohorts. Results: In this study, our results find that THOR is markedly upregulated in human OC tissues and predicts the poor prognosis of OC patients. Functional studies have revealed that knockdown of THOR inhibits the growth, metastasis and self-renewal of OC cells. Mechanistically, THOR drives OC cell progression via the IL-6/STAT3 signaling. Moreover, the specific STAT3 inhibitor S3I-201 or IL-6R inhibitor tocilizumab diminish the discrepancy in the growth, metastatic and self-renewal capacity between THOR-silenced OC cells and control cells, which further confirm that IL-6/STAT3 is required in THOR-driven OC cells progression. Conclusion: Our findings reveal that THOR could promote OC cells growth, metastasis and self-renewal by activating IL-6/STAT3 signaling and may be a good predictive factor and therapeutic target.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhihui Gao ◽  
Qianqing Wang ◽  
Mei Ji ◽  
Xiangcui Guo ◽  
Li Li ◽  
...  

Abstract Background There is growing evidence discussing the role of long non-coding RNAs (lncRNAs) in cervical cancer (CC). We performed this study to explore the impact of exosomal lncRNA urothelial cancer-associated 1 (UCA1) in CC stem cells by sponging microRNA-122-5p (miR-122-5p) and regulating SOX2 expression. Methods CC stem cells (CD133+CaSki) and exosomes were extracted and identified. The synthesized UCA1- and miR-122-5p-related sequences were transfected into CaSki cells, CaSki cells-derived exosomes were extracted and then co-cultured with CD133+CaSki cells. The functional roles of UCA1 and miR-122-5p in self-renewal and differentiation ability of CC stem cells were determined using ectopic expression, knockdown/depletion and reporter assay experiments. An in vivo experiment was performed to verify the in vitro results. Results Up-regulated UCA1 and SOX2 and down-regulated miR-122-5p were found in CaSki-Exo. Exosomes promoted invasion, migration, proliferation and restrained apoptosis of CD133+CaSki cells. Silencing UCA1 or up-regulating miR-122-5p degraded SOX2 expression, and reduced invasion, migration and proliferation of CD133+CaSki cells while advanced apoptosis and suppressed the tumor volume and weight in nude mice. Conclusion Our study provides evidence that CaSki-Exo can promote the self-renewal and differentiation ability of CC stem cells while silencing UCA1 or up-regulating miR-122-5p restrains self-renewal and differentiation of CC stem cells.


Author(s):  
Anna L. Höving ◽  
Beatrice A. Windmöller ◽  
Cornelius Knabbe ◽  
Barbara Kaltschmidt ◽  
Christian Kaltschmidt ◽  
...  

Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors’ sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.


2019 ◽  
Author(s):  
Sam Hinman ◽  
Yuli Wang ◽  
Nancy Allbritton

Biochemical gradients across the intestinal epithelium play a major role in governing intestinal stem cell compartmentalization, differentiation dynamics, and organ-level self-renewal. Advances in primary cell-derived <i>in vitro</i> models, in which a full suite of stem and differentiated cell types are present, have vastly accelerated our understanding of intestinal homeostasis and disease. However, scalable platforms that recapitulate the architecture and gradients present <i>in vivo</i> are absent. We present a platform in which individually addressable arrays of chemical gradients along the crypt long axis can be generated, enabling scalable culture of <i>in vitro</i> colonic epithelial replicas. The platform utilizes standardized well plate spacing, maintains access to basal and luminal compartments, and relies on a photopatterned porous membrane to act as diffusion windows while supporting the<i> in vitro </i>crypts. Simultaneous fabrication of 3,875 crypts over a single membrane was developed. Growth factor gradients were modelled and then experimentally optimized to promote long-term health and self-renewal of the crypts which were assayed <i>in situ</i> by confocal fluorescence microscopy. The cultured <i>in vitro</i> crypt arrays successfully recapitulated the architecture, stem/proliferative and differentiated cell compartmentalization, and luminal-to-basal polarity observed <i>in vivo</i>. Furthermore, known signaling regulators produced measurable and predictable effects on the proliferative and differentiated cell compartments. This platform is readily adaptable to the screening of tissue from individual patients to assay the impact of food and bacterial metabolites and/or drugs on colonic crypt dynamics. Importantly, the cassette is compatible with a wide range of sensing/detection modalities, and the developed fabrication methods should find applications for other cell and tissue types.


Sign in / Sign up

Export Citation Format

Share Document