scholarly journals Formation of self-assembled hierarchical structure on Zn doped in CuO nanoparticle using a microwave-assisted chemical precipitation approach

Author(s):  
Bruno E ◽  
Haris M ◽  
Mohan A ◽  
Senthilkumarb M.

Abstract In the present work, CuO and Cu1 − xZnxO were synthesized with the function of the Zn doping ratio by microwave-assisted chemical precipitation approach. The XRD pattern shows that the mono-phase CuO with a mono-clinical structure and no other secondary phase has been observed for the Cu1 − xZnxO with different Zn ratio and confirms CuO lattice does not get destroyed by the addition of Zn. The self-assembled hierarchical flower morphology was obtained for the higher doping ratio of Zn. The Energy Dispersive Analysis of X-ray spectrum confirms the presence of Zn in the CuO lattice and the stoichiometry obtained. The optical band gap was found to be 1.78 eV for CuO nanoparticles and the values are between 1.80 and 2.29 eV for Zn doped CuO. For higher Zn doped CuO, optical band splitting was observed due to flower-like morphology. The high recombination of an electron-hole was obtained for higher doping ratio nanoparticles. These properties are needed for Photocatalytic application.

2022 ◽  
Vol 1048 ◽  
pp. 110-120
Author(s):  
D.A. Dadhania ◽  
G.D. Jadav ◽  
S.K. Chavda ◽  
J.A. Bhalodia

The manganite systems investigated during the present work are pure La0.85Te0.15MnO3 (LTMO) and its composite with 12% concentration of Al2O3 nano powder (LTMO + Al2O3). The materials were prepared by the modified auto combustion technique. The samples were characterized by X-ray diffraction. The powder X-ray diffraction pattern of pure LTMO at room temperature shows that sample is in single phase with no detectable secondary phases and the sample have a rhombohedral structure in hexagonal with the space group R3c. The XRD pattern of LTMO + 12% Al2O3 indicates the clear presence of Al2O3 nano phase in the composite. In the present study, the FTIR Spectroscopy of both samples was carried out. It is clear from the Vibrational assignment for the value of corresponding peak position of FTIR spectra that no extra unwanted impurity is present in samples. A quantitative analysis of the energy dispersive spectroscopy (EDS) data indicates that the observed concentration of elements are very close to the calculated values from its chemical formula. R-T measurements reveals that the addition of secondary phase in manganite strongly influenced on electronic and magnetoresistance behaviour. We summarise some of the salient features of the results.


2017 ◽  
Vol 25 (7) ◽  
pp. 507-514 ◽  
Author(s):  
Nur Aziera Jumat ◽  
Phang Sook Wai ◽  
Juan Joon Ching ◽  
Wan Jefrey Basirun

Photocatalyst involving conducting polymer doped with titanium dioxide, TiO2 hold a great efficiency for photocatalytic application. In present study, polyaniline (PAni) with different TiO2 content (10%, 20%, and 40%) has been successfully synthesized through template free method. Ultraviolet-visible (UV-vis), Fourier Transform Infrared (FTIR), Raman, and X-ray Powder Diffraction (XRD) characterizations of PAni-TiO2 nanocomposites confirmed the chemical structure of polymer composites was intact after doped with TiO2. Field Emission Scanning Electron Microscope (FESEM) investigation of PAni-TiO2 nanocomposites revealed the formation of nanorod/nanotube. PAni-TiO2(10%) showed the highest conductivity 2.48 × 10−2 S/cm as compared to those with 20% and 40% of TiO2 content. Photocatalytic properties of PAni-TiO2 were examined by degrading Reactive Black 5 (RB5) dye under visible light irradiation. PAni-TiO2(10%) showed the greatest degradation (96%) than that of TiO2 (10%). Due to synergistic effect between PAni and TiO2, it is capable of absorbing visible light more efficiently and decreasing the process of electron hole recombination. Photoluminescence (PL) analysis proved low efficiency of electron hole recombination of PAni-TiO2.


2013 ◽  
Vol 678 ◽  
pp. 46-49 ◽  
Author(s):  
Ponnaian Peula Kumari ◽  
Rachel Oommen ◽  
Chinna Kannaiyan Senthil Kumaran ◽  
Mariyappan Thambidurai ◽  
Natarajan Muthukumarasamy ◽  
...  

Fe and Fe2 O3 nanoparticle have been synthesized by chemical precipitation method. The x-ray diffraction studies indicate the formation of Fe and Fe2 O3 nanoparticles with cubic phase and no secondary phase was observed. Surface morphology of Fe and Fe2 O3 has been studied using scanning electron microscopy (SEM). Transmission electron microscopy (TEM) images reveal that Fe and Fe2 O3 nanoparticle have size ranging from 25-41 nm.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
Martin Peckerar ◽  
Anastasios Tousimis

Solid state x-ray sensing systems have been used for many years in conjunction with scanning and transmission electron microscopes. Such systems conveniently provide users with elemental area maps and quantitative chemical analyses of samples. Improvements on these tools are currently sought in the following areas: sensitivity at longer and shorter x-ray wavelengths and minimization of noise-broadening of spectral lines. In this paper, we review basic limitations and recent advances in each of these areas. Throughout the review, we emphasize the systems nature of the problem. That is. limitations exist not only in the sensor elements but also in the preamplifier/amplifier chain and in the interfaces between these components.Solid state x-ray sensors usually function by way of incident photons creating electron-hole pairs in semiconductor material. This radiation-produced mobile charge is swept into external circuitry by electric fields in the semiconductor bulk.


2019 ◽  
Author(s):  
Ayesha Tariq ◽  
M. Abdullah Iqbal ◽  
S. Irfan Ali ◽  
Muhammad Z. Iqbal ◽  
Deji Akinwande ◽  
...  

<p>Nanohybrids, made up of Bismuth ferrites/Carbon allotropes, are extensively used in photocatalytic applications nowadays. Our work proposes a nanohybrid system composed of Bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets namely, the BiFeO<sub>3</sub> (BFO)/Ti<sub>3</sub>C<sub>2</sub> (MXene) nanohybrid for enhanced photocatalytic activity. We have fabricated the BFO/MXene nanohybrid using simple and low cost double solvent solvothermal method. The SEM and TEM images show that the BFO nanoparticles were attached onto the MXene surface and in the inter-layers of two-dimensional (2D) MXene sheets. The photocatalytic application is tested for the visible light irradiation which showed the highest efficiency among all pure-BFO based photocatalysts, i.e. 100% degradation in 42 min for organic dye (Congo Red) and colorless aqueous pollutant (acetophenone) in 150 min, respectively. The present BFO-based hybrid system exhibited the large surface area of 147 m<sup>2</sup>g<sup>-1</sup>measured via Brunauer-Emmett-Teller (BET) sorption-desorption technique, and is found to be largest among BFO and its derivatives. Also, the photoluminescence (PL) spectra indicate large electron-hole pair generation. Fast and efficient degradation of organic molecules is supported by both factors; larger surface area and lower electron-hole recombination rate. The BFO/MXene nanohybrid presented here is a highly efficient photocatalyst compared to other nanostructures based on pure BiFeO<sub>3</sub> which makes it a promising candidate for many future applications.</p>


2020 ◽  
Vol 16 ◽  
Author(s):  
Alliya Qamar ◽  
Rehana Zia ◽  
Madeeha Riaz

Background: Hydroxyapatite is similar to bone mineral in chemical composition, has good biocompatibility with host tissue and bone. Objective: This work aims to tailor the mechanical and dielectric properties of hydroxyapatite with zinc sudstitution, to improve wearability of implant and accelerate the healing process. Method: Pure and zinc incorporated hydroxyapatite Ca10(PO4)6(OH)2 samples have been successfully prepared by means of the chemical precipitation method. Results: The results showed that hydroxyapatite(Hap) having hexagonal structure was the major phase identified in all the samples. It was found that secondary phase of β-tricalcium phosphate (β-TCP) formed due to addition of Zinc resulting in biphasic structure BCP (Hap + β-TCP). A minor phase of ZnO also formed for higher concentration of Zn (Zn ≥ 2mol%) doping. It was found that the Zn incorporation to Hap enhanced both mechanical and dielectric properties without altering the bioactive properties. The microhardness increased upto 0.87 GPa for Zn concentration equal to 1.5mol%, which is comparable to the human bone ~0.3 - 0.9 GPa. The dielectric properties evaluated in the study showed that 1.5 mol% Zn doped hydroxyapatite had highest dielectric constant. Higher values of dielectric constant at low frequencies signifies its importance in healing processes and bone growth due to polarization of the material under the influence of electric field. Conclusion: Sample Z1.5 having 1.5 mol% Zn doping showed the most optimized properties suitable for bone regeneration applications.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Hanxiang Chen ◽  
Jianjian Yi ◽  
Zhao Mo ◽  
Yanhua Song ◽  
Wenshu Yang ◽  
...  

Abstract Photocatalysis technology has potential application in the field of energy and environment. How to expand visible light utilization and promote the separation efficiency of the carriers are the key issues for the high active photocatalysts preparation and future practical applications. In this work, a ternary metal sulfide Nb0.9Ta0.1S2 was prepared and used as an electron collector in the photocatalytic application. As a result, the generated electrons are quickly transferred to the surface of the composite to participate in the reaction. It was demonstrated that the photocatalytic activity of 2D-C3N4 was enhanced after the modification of Nb0.9Ta0.1S2. The Nb0.9Ta0.1S2/2D-C3N4 composite material was synthesized by solvothermal method. The composition of 5% Nb0.9Ta0.1S2/2D-C3N4 showed the highest H2 evolution rate of 1961.6 μmolg−1h−1, which was 6.6 times that of 2D-C3N4. The 15% Nb0.9Ta0.1S2/2D-C3N4 exhibited the best activity in Rhodamine B degradation rate of 97% in 2 h, which is 50% higher than that of 2D-C3N4. Nb0.9Ta0.1S2/2D-C3N4 can be used as electron trap to promote the effective separation of electron–hole pairs. This work provides benchmarks in exploring low-cost and efficient cocatalyst.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1101
Author(s):  
Anirban Karmakar ◽  
Anup Paul ◽  
Elia Pantanetti Sabatini ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.


Sign in / Sign up

Export Citation Format

Share Document