scholarly journals Characterization of bovine MHC DRB3 diversity in global cattle breeds, with a focus on cattle in Myanmar

2020 ◽  
Author(s):  
Guillermo Giovambattista ◽  
Kyaw Kyaw Moe ◽  
Meripet Polat ◽  
Liushiqi Borjigin ◽  
Si Thu Hein ◽  
...  

Abstract Background: Myanmar cattle populations predominantly consist of native cattle breeds, characterized by their geographical location and coat color, and the Holstein-Friesian crossbreed, which is highly adapted to the harsh tropical climates of this region. Here, we analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus that has been linked to the immune response, in Myanmar cattle populations.Methods: Blood samples (n=294) were taken from two native breeds (Pyer Sein, n=163 and Shwe Ni, n=69) and a cattle crossbreed (Holstein-Friesian, n=62) distributed across six regions of Myanmar (Bago, n=38; Sagaing, n=77; Mandalay, n=46; Magway, n=46; Kayin, n=43; Yangon, n=44). DNA was genotyped using the sequence-based typing method. DNA electropherograms were analyzed using the Assign 400ATF software. Results: We detected 71 distinct alleles, including three new variants for the BoLA-DRB3 gene. Venn analysis showed that 11 of these alleles were only detected in Myanmar native breeds and 26 were only shared with Asian native and/or Zebu groups. The number of alleles ranged from 33 in Holstein-Friesians to 58 in Pyer Seins, and the observed versus unbiased expected heterozygosity were higher than 0.84 in all the three the populations analyzed. The FST analysis showed a low level of genetic differentiation between the two Myanmar native breeds (FST=0.003), and between these native breeds and the Holstein-Friesians (FST < 0.021). The average FST value for all the Myanmar Holstein-Friesian crossbred and Myanmar native populations was 0.0136 and 0.0121, respectively. Principal component analysis (PCA) and tree analysis showed that Myanmar native populations grouped in a narrow cluster that diverged clearly from the Holstein-Friesian populations. Furthermore, the BoLA-DRB3 allele frequencies suggested that while some Myanmar native populations (Bago, Mandalay and Yangon) were more closely related to Zebu breeds (Gir and Brahman), others (Kayin, Magway and Sagaing) were more related to the native breeds found in the Philippines. On the contrary, the Holstein-Friesian populations demonstrated a high degree of dispersion, which is likely the result of the different degrees of native admixture in these populations. Conclusion: These results contribute to our understanding of the genetic diversity and distribution of BoLA-DRB3 gene alleles in Myanmar.

2020 ◽  
Author(s):  
Guillermo Giovambattista ◽  
Kyaw Kyaw Moe ◽  
Meripet Polat ◽  
Liushiqi Borjigin ◽  
Si Thu Hein ◽  
...  

Abstract Background: Myanmar cattle populations predominantly consist of native cattle breeds (Pyer Sein and Shwe), characterized by their geographical location and coat color, and the Holstein-Friesian crossbreed, which is highly adapted to the harsh tropical climates of this region. Here, we analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus that has been linked to the immune response, in Myanmar cattle populations.Methods: Blood samples (n=294) were taken from two native breeds (Pyer Sein, n=163 and Shwe Ni, n=69) and a cattle crossbreed (Holstein-Friesian, n=62) distributed across six regions of Myanmar (Bago, n=38; Sagaing, n=77; Mandalay, n=46; Magway, n=46; Kayin, n=43; Yangon, n=44). In addition, a database that included 2,428 BoLA-DRB3 genotypes from European (Angus, Hereford, Holstein, Shorthorn, Overo Negro, Overo Colorado, and Jersey), Zebuine (Nellore, Brahman and Gir), Asian Native from Japan and Philippine and Latin-American Creole breeds was also included. Furthermore, the information from the IPD–MHC database was also used in the present analysis. DNA was genotyped using the sequence-based typing method. DNA electropherograms were analyzed using the Assign 400ATF software.Results: We detected 71 distinct alleles, including three new variants for the BoLA-DRB3 gene. Venn analysis showed that 11 of these alleles were only detected in Myanmar native breeds and 26 were only shared with Asian native and/or Zebu groups. The number of alleles ranged from 33 in Holstein-Friesians to 58 in Pyer Seins, and the observed versus unbiased expected heterozygosity were higher than 0.84 in all the three the populations analyzed. The FST analysis showed a low level of genetic differentiation between the two Myanmar native breeds (FST=0.003), and between these native breeds and the Holstein-Friesians (FST < 0.021). The average FST value for all the Myanmar Holstein-Friesian crossbred and Myanmar native populations was 0.0136 and 0.0121, respectively. Principal component analysis (PCA) and tree analysis showed that Myanmar native populations grouped in a narrow cluster that diverged clearly from the Holstein-Friesian populations. Furthermore, the BoLA-DRB3 allele frequencies suggested that while some Myanmar native populations from Bago, Mandalay and Yangon regions were more closely related to Zebu breeds (Gir and Brahman), populations from Kayin, Magway and Sagaing regions were more related to the Philippines native breeds. On the contrary, PCA showed that the Holstein-Friesian populations demonstrated a high degree of dispersion, which is likely the result of the different degrees of native admixture in these populations.Conclusion: This study is the first to report the genetic diversity of the BoLA-DRB3 gene in two native breeds and one exotic cattle crossbreed from Myanmar. The results obtained contribute to our understanding of the genetic diversity and distribution of BoLA-DRB3 gene alleles in Myanmar, and increases our knowledge of the worldwide variability of cattle BoLA-DRB3 genes, an important locus for immune response and protection against pathogens.


Author(s):  
Guillermo Giovambattista ◽  
Kyaw Kyaw Moe ◽  
Meripet Polat ◽  
Liushiqi Borjigin ◽  
Si Thu Hein ◽  
...  

Abstract Background: Myanmar cattle populations predominantly consist of native cattle breeds (Pyer Sein and Shwe), characterized by their geographical location and coat color, and the Holstein-Friesian crossbreed, which is highly adapted to the harsh tropical climates of this region. Here, we analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus that has been linked to the immune response, in Myanmar cattle populations.Methods: Blood samples (n=294) were taken from two native breeds (Pyer Sein, n=163 and Shwe Ni, n=69) and a cattle crossbreed (Holstein-Friesian, n=62) distributed across six regions of Myanmar (Bago, n=38; Sagaing, n=77; Mandalay, n=46; Magway, n=46; Kayin, n=43; Yangon, n=44). In addition, a database that included 2,428 BoLA-DRB3 genotypes from European (Angus, Hereford, Holstein, Shorthorn, Overo Negro, Overo Colorado, and Jersey), Zebuine (Nellore, Brahman and Gir), Asian Native form Japan and Philippine and Latin-American Creole breeds was also included. Furthermore, the information from the IPD–MHC database was also used in the present analysis. DNA was genotyped using the sequence-based typing method. DNA electropherograms were analyzed using the Assign 400ATF software. Results: We detected 71 distinct alleles, including three new variants for the BoLA-DRB3 gene. Venn analysis showed that 11 of these alleles were only detected in Myanmar native breeds and 26 were only shared with Asian native and/or Zebu groups. The number of alleles ranged from 33 in Holstein-Friesians to 58 in Pyer Seins, and the observed versus unbiased expected heterozygosity were higher than 0.84 in all the three the populations analyzed. The FST analysis showed a low level of genetic differentiation between the two Myanmar native breeds (FST=0.003), and between these native breeds and the Holstein-Friesians (FST < 0.021). The average FST value for all the Myanmar Holstein-Friesian crossbred and Myanmar native populations was 0.0136 and 0.0121, respectively. Principal component analysis and tree analysis showed that Myanmar native populations grouped in a narrow cluster that diverged clearly from the Holstein-Friesian populations. Furthermore, the BoLA-DRB3 allele frequencies suggested that while some Myanmar native populations form Bago, Mandalay and Yangon regions were more closely related to Zebu breeds (Gir and Brahman), while populations from Kayin, Magway and Sagaing regions were more related to the Philippines native breeds. On the contrary, PCA showed that the Holstein-Friesian populations demonstrated a high degree of dispersion, which is likely the result of the different degrees of native admixture in these populations. Conclusion: This study is the first to report the genetic diversity of the BoLA-DRB3 gene in two native breeds and one exotic cattle crossbreed from Myanmar. The results obtained contribute to our understanding of the genetic diversity and distribution of BoLA-DRB3 gene alleles in Myanmar, and increases our knowledge of the worldwide variability of cattle BoLA-DRB3 genes, an important locus for immune response and protection against pathogens.


2020 ◽  
Author(s):  
Guillermo Giovambattista ◽  
Kyaw Kyaw Moe ◽  
Meripet Polat ◽  
Liushiqi Borjigin ◽  
Si Thu Hein ◽  
...  

Abstract Background: Myanmar cattle populations predominantly consist of native cattle breeds (Pyer Sein and Shwe), characterized by their geographical location and coat color, and the Holstein-Friesian crossbreed, which is highly adapted to the harsh tropical climates of this region. Here, we analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus that has been linked to the immune response, in Myanmar cattle populations.Methods: Blood samples (n=294) were taken from two native breeds (Pyer Sein, n=163 and Shwe Ni, n=69) and a cattle crossbreed (Holstein-Friesian, n=62) distributed across six regions of Myanmar (Bago, n=38; Sagaing, n=77; Mandalay, n=46; Magway, n=46; Kayin, n=43; Yangon, n=44). In addition, a database that included 2,428 BoLA-DRB3 genotypes from European (Angus, Hereford, Holstein, Shorthorn, Overo Negro, Overo Colorado, and Jersey), Zebuine (Nellore, Brahman and Gir), Asian Native from Japan and Philippine and Latin-American Creole breeds was also included. Furthermore, the information from the IPD–MHC database was also used in the present analysis. DNA was genotyped using the sequence-based typing method. DNA electropherograms were analyzed using the Assign 400ATF software. Results: We detected 71 distinct alleles, including three new variants for the BoLA-DRB3 gene. Venn analysis showed that 11 of these alleles were only detected in Myanmar native breeds and 26 were only shared with Asian native and/or Zebu groups. The number of alleles ranged from 33 in Holstein-Friesians to 58 in Pyer Seins, and the observed versus unbiased expected heterozygosity were higher than 0.84 in all the three the populations analyzed. The FST analysis showed a low level of genetic differentiation between the two Myanmar native breeds (FST=0.003), and between these native breeds and the Holstein-Friesians (FST < 0.021). The average FST value for all the Myanmar Holstein-Friesian crossbred and Myanmar native populations was 0.0136 and 0.0121, respectively. Principal component analysis (PCA) and tree analysis showed that Myanmar native populations grouped in a narrow cluster that diverged clearly from the Holstein-Friesian populations. Furthermore, the BoLA-DRB3 allele frequencies suggested that while some Myanmar native populations from Bago, Mandalay and Yangon regions were more closely related to Zebu breeds (Gir and Brahman), populations from Kayin, Magway and Sagaing regions were more related to the Philippines native breeds. On the contrary, PCA showed that the Holstein-Friesian populations demonstrated a high degree of dispersion, which is likely the result of the different degrees of native admixture in these populations. Conclusion: This study is the first to report the genetic diversity of the BoLA-DRB3 gene in two native breeds and one exotic cattle crossbreed from Myanmar. The results obtained contribute to our understanding of the genetic diversity and distribution of BoLA-DRB3 gene alleles in Myanmar, and increases our knowledge of the worldwide variability of cattle BoLA-DRB3 genes, an important locus for immune response and protection against pathogens.


Author(s):  
Hidelisa De Chavez ◽  
Teresita Borromeo ◽  
Nic Oswald Borines ◽  
Renerio Jr Gentallan

An increasing trend of soybean production and consumption has been seen in the Philippines. To assess the potential of the soybean germplasm for utilization, diversity of the Philippine soybean collection was established. High diversity was marked on 17 out of 29 qualitative characters, which include plant growth habit, leaf blistering and flower standard color. Phenotypic diversity indices (H’) of 92 soybean accessions averaged at 0.62. This aside, traits identical to a variety of soybean with superior characters were all present in the soybean germplasm collection. Using simple matching similarity coefficient, cluster analysis separated the different accessions into 12 distinct clusters at 62% similarity. Categorical Principal Component Analysis (CATPCA) showed that two independent components accounted for 35.36% of the total variation of the qualitative morphological characters. Factor loadings for each component showed the morphological characters, such as pubescence color, flower wing color, and seed coat color, that were contributing to the high projections in the two principal components. Accessions with vigorous seedlings were also observed. With the marked trait diversity, the soybean collection could be potentially used directly and for breeding purposes. Consequently, to uncover further the potential of our genetic resources at hand, the remaining germplasm accessions at NPGRL should be characterized and evaluated


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bashir Salim ◽  
Shin-nosuke Takeshima ◽  
Ryo Nakao ◽  
Mohamed A. M. Moustafa ◽  
Mohamed-Khair A. Ahmed ◽  
...  

AbstractAutochthonous Sudanese cattle breeds, namely Baggara for beef and Butana and Kenana for dairy, are characterized by their adaptive characteristics and high performance in hot and dry agro-ecosystems. They are thus used largely by nomadic and semi-nomadic pastoralists. We analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus linked to the immune response, for the indigenous cattle of Sudan and in the context of the global cattle repository. Blood samples (n = 225) were taken from three indigenous breeds (Baggara; n = 113, Butana; n = 60 and Kenana; n = 52) distributed across six regions of Sudan. Nucleotide sequences were genotyped using the sequence-based typing method. We describe 53 alleles, including seven novel alleles. Principal component analysis (PCA) of the protein pockets implicated in the antigen-binding function of the MHC complex revealed that pockets 4 and 9 (respectively) differentiate Kenana-Baggara and Kenana-Butana breeds from other breeds. Venn analysis of Sudanese, Southeast Asian, European and American cattle breeds with 115 alleles showed 14 were unique to Sudanese breeds. Gene frequency distributions of Baggara cattle showed an even distribution suggesting balancing selection, while the selection index (ω) revealed the presence of diversifying selection in several amino acid sites along the BoLA-DRB3 exon 2 of these native breeds. The results of several PCA were in agreement with clustering patterns observed on the neighbor joining (NJ) trees. These results provide insight into their high survival rate for different tropical diseases and their reproductive capacity in Sudan's harsh environment.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Sarai Villalobos-Chaparro ◽  
Erika Salas-Muñóz ◽  
Néstor Gutiérrez-Méndez ◽  
Guadalupe Virginia Nevárez-Moorillón

Chihuahua cheese is a local artisanal cheese traditionally produced from raw milk. When this cheese is produced with pasteurized milk, cheesemakers complain that there are differences in taste and aroma as compared with traditional manufacturing. This work aimed to obtain a descriptive sensory analysis of Chihuahua cheese manufactured with raw milk under traditional conditions. Samples were collected in five cheese dairies at two different seasons (summer and autumn), and a Quantitative Descriptive Sensorial Analysis was done by a panel of trained judges. For aroma descriptors, cooked descriptor showed differences between dairies, and whey was different among dairies and sampling seasons (P<0.01); diacetyl, fruity (P<0.01), as well as free fatty acids, nutty and sulphur (P<0.05) descriptors varied between seasons. For flavour descriptors, bitter perception was different between dairies and seasons (P<0.01). Salty and creamy cheese was also different among dairies (P<0.01). A Principal Component Analysis for differences among dairies and sampling season demonstrated that the first three components accounted for 90% of the variance; variables were more affected by the sampling seasons than by the geographical location or if the dairy was operated by Mennonites. Chihuahua cheese sensorial profile can be described as a semi-matured cheese with a bitter flavour, slightly salted, and with a cream flavour, with aroma notes associated with whey and sour milk. Principal Component Analysis demonstrated season influence on flavour and aroma characteristics.


Planta Medica ◽  
2018 ◽  
Vol 85 (03) ◽  
pp. 185-194 ◽  
Author(s):  
Mei Wang ◽  
Amar Chittiboyina ◽  
Jon Parcher ◽  
Zulfiqar Ali ◽  
Paul Ford ◽  
...  

AbstractThe growing demand and commercial value of black pepper (Piper nigrum) has resulted in considerable interest in developing suitable and cost-effective methods for chemical characterization and quality evaluation purposes. In the current study, an extensive set of oil samples (n = 23) that were extracted by steam distillation from black pepper seeds was investigated to compare the chemical profiles of samples originating from nine major producing countries, as well as to identify potential chemical markers for quality evaluation. The twenty-two most abundant volatile compounds, mainly terpenes, in these oils were determined by conventional GC/MS analysis. Principal component analysis with this set of data revealed distinct clusters for samples that originated from China and Malaysia. Relatively low concentrations of sabinene (< 0.2%) and high concentrations of 3-carene (10.9 – 21.1%) were observed in these samples, respectively, compared to oil samples from other countries. The enantiomeric distributions of key terpene markers, viz., β-pinene, sabinene, limonene, and terpinen-4-ol, were determined by chiral GC/MS analysis. Interestingly, for these four monoterpenes, levo-isomers were found to be predominant, emphasizing the highly conserved enzymatic processes occurring in P. nigrum. Moreover, consistent enantiomeric ratios ((−) isomer/(+) isomer) of 92.2 ± 3.0% for β-pinene, 94.8 ± 2.8% for sabinene, 60.7 ± 1.1% for limonene, and 78.3 ± 1.3% for terpinen-4-ol were observed, independent of geographical location. These results demonstrate the potential of using stereospecific compositions as chiral signatures for establishing the authenticity and quality of black pepper oil.


2020 ◽  
Vol 83 (S1) ◽  
pp. 271 ◽  
Author(s):  
Pierluigi Carbonara ◽  
Walter Zupa ◽  
Aikaterini Anastasopoulou ◽  
Andrea Bellodi ◽  
Isabella Bitetto ◽  
...  

The uncertainty in age estimation by otolith reading may be at the root of the large variability in red mullet (Mullus barbatus) growth models in the Mediterranean. In the MEDITS survey, red mullet age data are produced following the same sampling protocol and otolith reading methodology. However, ageing is assigned using different interpretation schemes, including variations in theoretical birthdate and number of false rings considered, in addition to differences in the experience level of readers. The present work analysed the influence of these variations and the geographical location of sampling on red mullet ageing using a multivariate approach (principal component analysis). Reader experience was the most important parameter correlated with the variability. The number of rings considered false showed a significant effect on the variability in the first age groups but had less influence on the older ones. The effect of the theoretical birthdate was low in all age groups. Geographical location had a significant influence, with longitude showing greater effects than latitude. In light of these results, workshops, exchanges and the adoption of a common ageing protocol based on age validation studies are considered fundamental tools for improving precision in red mullet ageing.


2015 ◽  
Vol 84 (4) ◽  
pp. 327-336 ◽  
Author(s):  
Radka Dujková ◽  
Yuvaraj Ranganathan ◽  
Aleš Dufek ◽  
Jan Macák ◽  
Jiří Bezdíček

The aim of this study was to evaluate the polymorphic effects of two single nucleotide polymorphisms (SNPs) of fatty acid binding protein (FABP4) and stearoyl-CoA desaturase (SCD) genes on intramuscular fatty acid profiles in the longissimus muscle in two cattle breeds. Two previously reported SNPs of bovine FABP4 (7516G>C) and SCD (878C>T) were in turn assessed for their associations with intramuscular fatty acid profiles from the upper sirloin cuts of Aberdeen Angus and Blonde d’Aquitaine cattle. In total, 33 animals were genotyped using PCR-RFLP. Intramuscular fatty acid composition was evaluated using two complementary statistical approaches: a classical univariate regression model and a multivariate approach using a combination of Principal Component Analysis and Random Forests. Significant effect of FABP4 SNP genotypes was found for several fatty acids including C15:0, C17:0, C18:0, C14:1, C17:1, C18:2n6, C20:4n6, C20:5n3, C22:5n3, total n-3, n-6 and total SFA (P < 0.05). These results suggest that FABP4 is a potential candidate gene affecting fatty acid composition in beef cattle.


2022 ◽  
pp. 1-20
Author(s):  
Soledad Natalia M. Dalisay ◽  
Vicente Y. Belizario ◽  
Joseph Aaron S. Joe ◽  
Carlo R. Lumangaya ◽  
Reginaldo D. Cruz

Abstract Schistosomiasis japonica remains a public health concern in many areas of the Philippines. Periodic Mass Drug Administration (MDA) to at-risk populations is the main strategy for morbidity control of schistosomiasis. Attaining MDA coverage targets is important for the reduction of morbidity and prevention of complications due to the disease, and towards achieving Universal Health Care. The study employed a qualitative case study design. Key informant interviews and focus group discussions were conducted to provide in-depth and situated descriptions of the contexts surrounding the implementation of MDA in two selected villages in known schistosomiasis-endemic provinces in Mindanao in the Philippines. Data analysis was done using the Critical Ecology for Medical Anthropology (CEMA) model coupled with the intersectionality approach. It was found that within various areas in the CEMA model, enabling as well as constraining factors have been encountered in MDA in the study settings. The interplay of income class, geographical location, gender norms and faith-based beliefs may have led to key populations being missed during the conduct of MDA in the study sites. The constraints faced by the target beneficiaries of MDA, as well as programme implementers, must be addressed to enhance service delivery and to control morbidity due to schistosomiasis. Improving compliance with MDA also requires a holistic, integrated approach to addressing barriers to participation, which are shaped by wider socio-political and power structures.


Sign in / Sign up

Export Citation Format

Share Document