scholarly journals Manganese in potable water of nine districts, Bangladesh: Human health risk

Author(s):  
Md. Aminur Rahman ◽  
Md. Abul Hashem ◽  
Md. Sohel Rana ◽  
Md. Rashidul Islam

Abstract Safe drinking water is directly linked to good human health. An excessive amount of manganese (Mn) in drinking water supplies causes people show symptoms of neurotoxicity. In this study, the level of Mn in potable water sourced from tube wells located in 9 (nine) districts of Bangladesh was monitored. In total 170 (one hundred and seventy) water samples were collected and Mn was quantified by atomic absorption spectroscopy (AAS). The levels of Mn found in the tube well water samples of Sirajganj, Meherpur, Chuadanga, Jhenaidah, Magura, Faridpur, Jashore, Satkhira, and Khulna were 0.37–1.86, 0.10–4.11, 0.30–0.76, 0.26–0.94, 0.01–0.18, 0.21–1.78, 0.08–1.23, 0.05–0.27 and 0.01–2.11 mg/L, respectively. Results revealed that Mn level was beyond the highest contaminated levels of 0.1 mg/L and 0.4 mg/L, which are recommended by Bangladesh Drinking Standard (BDS) and World Health Organization (WHO), respectively. The maximum Mn contaminated level reached up to 4.11 mg/L (mean: 0.53 mg/L). The Mn level in tube well water exceeded 51.1% and 75.9% set by the recommended value of WHO and BDS, respectively. Furthermore, the calculated hazard quotient (HQ) value for Mn was observed to be greater than unity, indicating both children and adults risked potential non-carcinogenic health issues. The water supply authorities should take steps to provide Mn-free drinking water for communities.

2001 ◽  
Vol 67 (7) ◽  
pp. 3328-3330 ◽  
Author(s):  
M. S. Islam ◽  
A. Siddika ◽  
M. N. H. Khan ◽  
M. M. Goldar ◽  
M. A. Sadique ◽  
...  

ABSTRACT Five tube-wells in Matlab, Bangladesh, were selected for analysis of selected biophysicochemical parameters. The results showed that all tube-well water samples contained zooplankton and bacteria. Results for some of the parameters were outside the accepted limits recommended by the World Health Organization for drinking water. It is concluded that water from tube-wells should be treated if used as drinking water.


2020 ◽  
Vol 4 (3) ◽  
pp. 531-537
Author(s):  
ABDULRASHID YUSUF ◽  
Abdurrahman Nuraddeen

The study involved the analysis of some selected heavy metals in drinking water consumed within Katsina Metropolis. The water samples were collected from Ajiwa dam raw water, taps, wells, boreholes, and sachet waters and the concentration of heavy metals (Cd, Pb, Cr, Co, and Ni), was determined using Atomic Absorption Spectrophotometer (AAS). The results obtained from the water analysis indicate that cadmium was not found in all the water samples. The concentrations range for lead were  (6.222-109.63)µg/L with maximum concentration value of 109.63 µg/L in Ajiwa dam raw water, above the World Health Organization (WHO) limit, nickel (0.72-6.99)µg/L with maximum concentration value of 6.99 µg/L in borehole water, within WHO limit, chromium (36-72)µg/L with maximum concentration value of 72 µg/L in well water, above WHO limit, cobalt  (4.758-9.516) µg/L with maximum concentration value of 9.516 µg/L in well water, within WHO limit. The results indicate that most of the concentrations of the heavy metals determined were within the WHO limit, except for chromium in well water which may arises from the Government activities of money recycling and incineration of old bank notes which does not affect other water sources in the area and lead in Ajiwa dam raw water which was further removed through water treatment processes. Moreover, the Analysis of Variance  (ANOVA)  indicate no significant difference in the means of the heavy metals concentrations in all the water samples analyzed, and this may be due to the same physicochemical factors and limited industrial activities in the study area


2018 ◽  
Vol 54 (4B) ◽  
pp. 240
Author(s):  
Phan Nhu Nguyet

The communities within Binh Dinh province in the Central Vietnam are reliant on groundwater as their primary supply of domestic and potable water. Meanwhile, it is seriously contaminated with fluoride that causing fluorosis problem for people. This study aims to investigate the link between severity of dental fluorosis rate in a population and fluoride concentration in drinking water in Tay Son area. A total of 50 well-water samples were collected and 220 people were surveyed by questionnaire from 50 households at 3 villages: Tay Phu, Binh Tuong, Tay Giang of Tay Son district, Binh Dinh province, Vietnam. The quantitative assessment of severity of dental fluorosis was done by calculating the Community Fluorosis Index (CFI) using Dean’s classification. Result of this study showed that fluoride concentration in well-water varied from 0.31 mg/L to 7.69 mg/L (mean 2.66 mg/L, SD: 2.18 mg/L) with 70 % of well-water samples above the maximum permissible limit of 1.5 mg/L of World Health Organization (WHO) drinking water standard. 100 % people surveyed was suffered from dental fluorosis and Dean scale of dental fluorosis ranged from level 2 to level 5. CFI varied from 3.45 to 4.13 above limit value (0.6). The community seriously suffered from dental fluorosis. The fluoride concentrations and Dean Index have high correlation (r = 0.580, p < 0.0001). Based upon results of this study, it is recommended that the government should supply drinking water with appropriate fluoride content for this community.


2018 ◽  
Vol 15 (3) ◽  
pp. 270-277
Author(s):  
Baghdad Science Journal

The toxicological risks and lifetime cancer risks associated with exposure to disinfection by-products (DBPs) including Halloacetic acids (HAAs) and trihalomethanes (THMs) compounds by drinking water in several districts in Wassit Province were estimated. The seasonal variation of HAAs and THMs compounds in drinking water have indicated that the mean values for total HAAs (THAAs) and total THMs (TTHMs) ranged from 43.2 to 72.4 mg/l and from 40 to 115.5 mg/l, respectively. The World health organization index for additive toxicity approach was non-compliant with the WHO guideline value in summer and autumn seasons and this means that THMs concentration has adverse toxic health effects. The multi-pathway of lifetime human health risk of cancer credited to THMs and HAAs in drinking water via three exposure routes for THMs and only one exposure route for HAAs was evaluated and found to be 6.13×10-4 and 1.78×10-4 respectively and these values were higher than the US.EPA range of concern limit of 1×10-6. The risk ratio of THAAs to TTHMs was 3.44. Also, the highest cancer risk was recorded for BDCM followed by DBCM, CF, TCAA, DCAA, and BF.


Author(s):  
Minhaz Farid Ahmed ◽  
Mazlin Bin Mokhtar

Although toxic Cd (cadmium) and Cr (chromium) in the aquatic environment are mainly from natural sources, human activities have increased their concentrations. Several studies have reported higher concentrations of Cd and Cr in the aquatic environment of Malaysia; however, the association between metal ingestion via drinking water and human health risk has not been established. This study collected water samples from four stages of the drinking water supply chain at Langat River Basin, Malaysia in 2015 to analyze the samples by inductivity coupled plasma mass spectrometry. Mean concentrations of Cd and Cr and the time-series river data (2004–2014) of these metals were significantly within the safe limit of drinking water quality standard proposed by the Ministry of Health Malaysia and the World Health Organization. Hazard quotient (HQ) and lifetime cancer risk (LCR) values of Cd and Cr in 2015 and 2020 also indicate no significant human health risk of its ingestion via drinking water. Additionally, management of pollution sources in the Langat Basin from 2004 to 2015 decreased Cr concentration in 2020 on the basis of autoregression moving average. Although Cd and Cr concentrations were found to be within the safe limits at Langat Basin, high concentrations of these metals have been found in household tap water, especially due to the contamination in the water distribution pipeline. Therefore, a two-layer water filtration system should be introduced in the basin to achieve the United Nations Sustainable Development Goals (SDGs) 2030 agenda of a better and more sustainable future for all, especially via SDG 6 of supplying safe drinking water at the household level.


2016 ◽  
Vol 23 (03) ◽  
pp. 339-342
Author(s):  
Abubakar Imran ◽  
Tariq Manzoor ◽  
Muhammad Ibrahim ◽  
Wasif Munaf

Introduction: World Health Organization, (WHO) estimates that more than 80%of poor health conditions in developing countries, is related to water and sanitation condition.The supply water and sanitary lines often overlap in our water supply system and watercontaminated by fecal contents and become a major cause of GIT infections and outbreaksin human populations. Objective: The Objective of the study was to determine the fecalcontamination level in tube well water across the distributing supply lines. Study Design: Thestudy design was observational. Settings: Fatima Memorial Hospital, College of Medicine andDentistry Shadman Lahore. Period: February 01, 2012 to May 29, 2012. Method: The studydid not engage any ethical issues and conducted in five specific regions of Lahore. A 100 mlof water sample was collected in sterile container, from the tube well and after every 100 meterdistance till 500 meters. The sample size was 250 from 45 tube wells and their distributingsupply lines. It was then observed for fecal coliforms using prescribed scientific methods.Result: The results indicated that bacterial growth at baseline was 42.2%, and at extremity was73.3%. The A Category water obtained at baseline is 60.0% and at the extreme level it is 26.7%.So by increasing distance from source of water the risk of fecal contamination and low qualityof drinking water increases. Conclusion: It is concluded that as the distance increased fromthe main source


2018 ◽  
Vol 8 (3) ◽  
pp. 497-507
Author(s):  
Philip Ruciaka Kirianki ◽  
Edward Muchiri ◽  
Natasha Potgieter

Abstract Njoro sub-county in Kenya suffers from constant water shortages causing the residents to rely on both improved and unimproved water sources in the area. The households in the sub-county also use different household storage containers to store drinking water in times when water is not readily available. This study was therefore undertaken to assess selective physico-chemical parameters of water used by the population for drinking purposes using standard assessment methods. A total of 372 water source samples and 162 storage container water samples were tested over a period of three months. Turbidity (0.70–273.85 NTU), iron (0.7–2.10 mg/L), fluoride (0.15–4.01 mg/L), manganese (0.01–0.37 mg/L), and nitrate (0.09–27.90 mg/L) levels in water samples were generally higher than the Kenya Bureau of Standards (KEBS) and/or the World Health Organization (WHO) water quality recommendations for safe drinkable water. The results from this study support the need for continuous monitoring and treating drinking water at the points of collection and of consumption to minimize the long-term health effects on communities consuming this water.


2011 ◽  
Vol 8 (1) ◽  
pp. 276-280 ◽  
Author(s):  
Olcay Kaplan ◽  
Nuran Cikcikoglu Yildirim ◽  
Numan Yildirim ◽  
Nilgun Tayhan

The drinking water quality is associated with the conditions of the water supply networks, the pollution and the contamination of groundwater with pollutants of both anthropogenic and natural origin. In this study, water samples were taken from four different waterworks in Tunceli, Turkey and heavy metals concentrations (As, Cu, Cd, Cr, Pb, Ni and Hg) were measured. Four sampling sites were pre-defined in different locations of the city. The obtained results showed that, the heavy metals concentrations in water samples did not exceed the values of WHO (World Health Organization), EC (Europe Community), EPA (Environment Protection Agency) and TSE-266 (Turkish Standard) guidelines.


2020 ◽  
Vol 10 (14) ◽  
pp. 5006 ◽  
Author(s):  
Marc J. Addison ◽  
Michael O. Rivett ◽  
Peaches Phiri ◽  
Prince Mleta ◽  
Emma Mblame ◽  
...  

Consumption of groundwater containing fluoride exceeding World Health Organization (WHO) 1.5 mg/L standard leaves people vulnerable to fluorosis: a vulnerability not well characterised in Malawi. To evaluate geogenic fluoride source and concentration, groundwater fluoride and geology was documented in central Malawi where groundwater supplies are mainly sourced from the weathered basement aquifer. Lithological composition was shown as the main control on fluoride occurrence. Augen gneiss of granitic composition posed the greatest geological fluoride risk. The weathered basement aquifer profile was the main factor controlling fluoride distributions. These results and fluoride-lithology statistical analysis allowed the development of a graded map of geological fluoride risk. A direct link to human health risk (dental fluorosis) from geological fluoride was quantified to support science-led policy change for fluoride in rural drinking water in Malawi. Hazard quotient (HQ) values were calculated and assigned to specific water points, depending on user age group; in this case, 74% of children under six were shown to be vulnerable to dental fluorosis. Results are contrary to current standard for fluoride in Malawi groundwater of 6 mg/L, highlighting the need for policy change. Detailed policy recommendations are presented based on the results of this study.


2021 ◽  
Vol 5 (2) ◽  
pp. 112-116
Author(s):  
F., F. Akinola ◽  
M., O. Lasisi ◽  
B., S. Awe

Groundwater pollution has increased as a result of poor waste disposal practices in developing countries. The purpose of this study was to determine the levels of physicochemical parameters and heavy metal concentrations in order to investigate the impact of dumpsites on groundwater and soil quality in Erinfun community. Four (4) water samples were collected hand dug well and four (4) soil samples designated Ss1 to Ss4 were collected at distances of 10, 20, 30 and 40 m, respectively, away from the waste dumpsite. Physicochemical parameters and traces such as odour, colour, taste and temperature, as well as Biochemical Oxygen Demand, Chemical Oxygen Demand, Dissolve Oxygen, Total Dissolve Solid, pH, and chloride were measured in collected water samples. Collected soil samples were also analyzed for heavy metals such as Magnesium, Zinc, Iron, Chromium, and Lead. All the physical parameters of the water samples analysed were found not to be within the acceptable limit of World Health Organization and Nigerian Standard of Drinking Water Quality standards. The chemical constituents tested were within the acceptable limit of World Health Organization and Nigerian Standard of Drinking Water Quality except for the Biochemical Oxygen Demand, Chemical Oxygen Demand and Dissolve Oxygen of water samples 1 and 2, respectively. The concentration of trace metals in water sample test were within health limit except for Magnesium and Iron which has the highest concentrations in water sample 1 at 10 m away from dumpsite (61.00 mg/l and 0.46 mg/l). Consequently, open dumpsites are discouraged, and constructed standard landfills with appropriate monitoring guidelines are recommended.


Sign in / Sign up

Export Citation Format

Share Document