scholarly journals BMSC-Derived Exosomes Intervened the Pathogenic Changes of Scleroderma in Mouse Through Its microRNAs

Author(s):  
Jiahui Jin ◽  
Qingjian OU ◽  
Zhe Wang ◽  
Haibin Tian ◽  
Jingying Xu ◽  
...  

Abstract BackgroundSystemic sclerosis (SSc) is a disease with severe fibrosis of the skin without effective therapy. While bone marrow mesenchymal stem cell (BMSC) derived exosome was a potential stem cell-based candidate in treatment of SSc.MethodsBMSCs were isolated from the bone marrow of mouse and identified with the surface markers and multi-lineage differentiation. The exosomes were isolated from the BMSCs culture medium with ultracentrifugation and identified with NTA, TEM and western blot. The miRNAs of the BMSC-derived exosomes (BMSC-EXOs) were studied via miRNA sequencing and bioinformatic analysis. The SSc model was established in mice by bleomycin (BLM) subcutaneous injection and the mice were treated with BMSCs or BMSC-derived exosomes. The skin tissues were dissociated and analyzed with H&E staining, RNA sequencing and immunohistochemical staining.ResultsEvident pathological changes like fibrosis and inflammation induced in the skin of BLM-treated mice. Both BMSCs and BMSC-EXOs effectively intervened such pathological manifestations and disease process, in a very similar way. The effects of the BMSC-EXOs were tracked to their microRNAs, which were proved to be involved in regulating the proliferation and differentiation of multiple cell types and in multiple biological processes when the EXOs functioned. Furthermore, the TGF-β1 positive cells and α-SMA positive myofibroblasts were significantly increased in the scleroderma skin of BLM-treated mice, but evidently reduced in the EXO-treated SSc group. Meanwhile, the number of mast cells as well as the infiltrated macrophages and lymphocytes were evidently increased in the skins of the BLM-treated mice, but significantly reduced by the EXO treatment. Such observations were confirmed by the data of the detected inflammatory cytokines that significantly higher mRNA levels of Il6, Il10 and Tnf-α were found in SSc mice, but reduced following the EXO treatment. Through bioinformatics analysis, TGFβ and WNT signaling pathways were revealed to be closely involved in the pathogenic changes in mouse SSc and could be the main targets for treating the disease.ConclusionsBMSC-derived exosomes could be developed as a potential therapy for treating the dysfunction of the skin in SSc, especially for its similar efficacy with BMSCs but less regulated as compared to cell therapy. Its mechanisms are involved in its microRNAs which alleviate the SSc pathogenic changes through regulating WNT and TGFβ signaling pathways.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiahui Jin ◽  
Qingjian Ou ◽  
Zhe Wang ◽  
Haibin Tian ◽  
Jing-Ying Xu ◽  
...  

Abstract Background Systemic sclerosis (SSc) is a disease that features severe fibrosis of the skin and lacks effective therapy. Bone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) are potential stem cell-based tools for the treatment of SSc. Methods BMSCs were isolated from the bone marrow of mice and identified with surface markers according to multilineage differentiation. EVs were isolated from the BMSC culture medium by ultracentrifugation and identified with a Nanosight NS300 particle size analyzer, transmission electron microscopy (TEM), and western blot. The microRNAs (miRNAs) of BMSC-derived EVs (BMSC-EVs) were studied via miRNA sequencing (miRNA-seq) and bioinformatic analysis. An SSc mouse model was established via subcutaneous bleomycin (BLM) injection, and the mice were treated with BMSCs or BMSC-derived EVs. Skin tissues were dissociated and analyzed with H&E staining, RNA sequencing (RNA-seq), western blot, and immunohistochemical staining. Results Evident pathological changes, like fibrosis and inflammation, were induced in the skin of BLM-treated mice. BMSCs and BMSC-EVs effectively intervened such pathological manifestations and disease processes in a very similar way. The effects of the BMSC-EVs were found to be caused by the miRNAs they carried, which were proven to be involved in regulating the proliferation and differentiation of multiple cell types and in multiple EV-related biological processes. Furthermore, TGF-β1-positive cells and α-SMA-positive myofibroblasts were significantly increased in the scleroderma skin of BLM-treated mice but evidently reduced in the scleroderma skin of the EV-treated SSc group. In addition, the numbers of mast cells and infiltrating macrophages and lymphocytes were evidently increased in the skin of BLM-treated mice but significantly reduced by EV treatment. In line with these observations, there were significantly higher mRNA levels of the inflammatory cytokines Il6, Il10, and Tnf-α in SSc mice than in control mice, but the levels decreased following EV treatment. Through bioinformatics analysis, the TGFβ and WNT signaling pathways were revealed to be closely involved in the pathogenic changes seen in mouse SSc, and these pathways could be therapeutic targets for treating the disease. Conclusions BMSC-derived EVs could be developed as a potential therapy for treating skin dysfunction in SSc, especially considering that they show similar efficacy to BMSCs but have fewer developmental regulatory requirements than cell therapy. The effects of EVs are generated by the miRNAs they carry, which alleviate SSc pathogenic changes by regulating the WNT and TGFβ signaling pathways.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2733-2740 ◽  
Author(s):  
K Yoshimura ◽  
RG Crystal

Abstract Human neutrophil elastase (NE), a 29-Kd potent serine protease stored in azurophilic granules of mature neutrophils, is coded for by the NE gene, a single copy gene with 5 exons spanning a 6-kb segment of chromosome 11 at q14. With the knowledge that the NE gene expression is limited to early myeloid cell differentiation, mechanisms modulating expression of the NE gene were evaluated in the HL-60 promyelocytic leukemia cell line, a model of early bone marrow precursor cells. Consistent with the presence of NE messenger RNA (mRNA) transcripts in undifferentiated HL-60 cells, nuclear transcription run-on analyses showed that HL-60 cells actively transcribed the NE gene. However, the transcription rate of the NE gene was relatively low, only 40% of the myeloperoxidase gene, a gene expressed in parallel with NE. When induced toward the mononuclear phagocytic lineage with phorbol 12- myristate 13-acetate (PMA), HL-60 cells exhibited marked suppression of NE gene transcription, declining to 17% of the resting rate within 2 days. Induction toward mononuclear phagocytic lineage differentiation caused no change in NE mRNA transcript half-life (T1/2), but mRNA levels decreased markedly over time, with levels undetectable 1.5 days after PMA stimulation. In contrast, when induced toward the myelocytic lineage with dimethyl sulfoxide, the rate of NE gene transcription increased 1.9-fold within 5 days. Interestingly, the mRNA transcript levels increased 2.5-fold by 5 days despite the fact that induction toward myelocytic lineage differentiation was accompanied by a marked reduction of NE mRNA transcript T1/2. Together, these observations suggest that the NE gene expression during bone marrow differentiation is modulated mainly at the transcriptional level, with some posttranscriptional modulation contributing, particularly during myelocytic lineage differentiation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2573-2573 ◽  
Author(s):  
Hans-Jorg Buhring ◽  
Venkata L. Battula ◽  
Sabrina Treml ◽  
Lothar Kanz ◽  
Wichard Vogel

Abstract We have previously described a novel culture protocol to grow MSC from bone marrow (BM) and non-amniotic placenta (PL) with an immature phenotype and multi-lineage differentiation capacity (1). Using the low affinity nerve growth factor receptor (CD271) (2) as a key marker for isolation of MSC derived from femur shaft bone marrow cells (BM-MSC) of patients undergoing a total hip replacement, we could identify two CD271+ distinct populations: CD271dull and CD271bright cells. Two-color flow cytometer analysis revealed that only the CD271bright population coexpressed the mesenchymal markers CD10, CD13, CD73, and CD105, but was negative for CD45. CD271dull cells were positive for CD45 and HLA-DR but negative for the other markers. To analyze the mesenchymal stem cell potential, colony-forming-unit fibroblast (CFU-F) assays were performed. Not surprisingly, the CFU-F were exclusively detected in the CD271bright but not in the CD271dull fraction. By screening a battery of antibodies against known and unknown antigens, we identified several reagents that selectively detected the CD271brightCD45- population but no other bone marrow cells. These markers included the PDGF-RB (CD140b), the embryonic stem cell marker TRA-1-49, the clustered markers HER-2/erbB2 (CD340), the recently described W8B2 antigen (3), as well as the cell surface antigens defined by the antibodies W1C3, W3D5, W4A5, W5C4, W5C5, W7C6, 9A3, 58B1, F9-3C2F1, and HEK-3D6. In conclusion we identified several novel markers for the prospective isolation and characterization of BM-MSC.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3858-3858 ◽  
Author(s):  
Ou Li ◽  
Ariane Tormin ◽  
Jan Claas Brune ◽  
Berit Sundberg ◽  
Johan Hyllner ◽  
...  

Abstract Abstract 3858 Mesenchymal stroma cells (MSC) have a high potential for novel cell therapy approaches in clinical transplantation due to their intriguing properties, e.g. high proliferation and differentiation capacity, stromal support and immune-modulation. Commonly, bone marrow-derived MSC (BM-MSC) are used for clinical MSC cell therapies. However, BM-derived MSC have a restricted proliferative capacity and cultured BM-MSC are heterogeneous and thus difficult to standardize. Human embryonic stem cell-derived mesenchymal stroma cells (hES-MSC) have recently been developed and might represent an alternative and unlimited source of hMSCs. We therefore aimed to characterize human ES-cell-derived MSC, i.e. the hES-MSC line hES-MP002.5 (Cellartis) and compare its properties with normal human bone marrow (BM) derived MSC. We found that hES-MP cells have lower yet reasonable CFU-F capacity when compared with BM-MSC (6+3 vs 25+1 CFU-F per 100 cells). hES-MP cells showed similar immunophenotypic properties compared with BM-MSC (flow cytometry): Both cell types were positive for CD105, CD73, CD166, HLA Class I, CD44, CD146 and CD90, and cells were negative for surface markers such as CD45, CD34, CD14, CD31, CD19, and HLA-DR. hES-MP, like BM-MSC, could be differentiated into adipocytes, osteoblasts and chondrocytes upon induction in vitro. In order to test whether MSC were capable of homing to the bone marrow after intravenous injection, hES-MP and BM-MSC were markerd with GFP, and sorted GFP-positive cells were injected intravenously into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. GFP-positive cells were not detected in the bone marrow 24 hours after injection, neither when hES-MP cells were injected, nor - and as expected - when cultured BM-MSC were used. Intra-femoral transplantation into NSG mice using GFP expressing hES-MP and BM-MSC on the other hand demonstrated successful long-term engraftment (8 weeks) for both cell types. Morphology and intra-femoral localization of hES-MP were similar compared to BM-MSC. LTC-IC and co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP, like BM-MSC, possess potent stroma support function both in vitro and in vivo. However, hES-MP showed no or only little activity in mixed lymphocyte cultures and PHA lymphocyte stimulation assays. In summary, our data demonstrate that MSC derived from hES cells have biological properties and potent stroma functions similar to conventional BM-MSC. Thus, ES-cell derived MSC might be an attractive and reliable alternative and unlimited source for obtaining MSC for clinical cell therapy. However, hES-MP probably have no or only little immuno-modulative capacity, which may limit their potential clinical use. Disclosures: Hyllner: Cellartis AB: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 962-962
Author(s):  
Bin Zhang ◽  
Yin Wei Ho ◽  
Tessa L. Holyoake ◽  
Claudia S Huettner ◽  
Ravi Bhatia

Abstract Abstract 962 Specialized bone marrow (BM) microenvironmental niches are essential for hematopoietic stem cell (HSC) lodgment and maintenance. However microenvironmental interactions of leukemia stem cells (LSC) are poorly understood. Although chronic myelogenous leukemia (CML) results from HSC transformation by the BCR-ABL gene, the role of the microenvironment in modulating leukemia development is not known. We employed the SCL-tTA-BCR/ABL mouse model of CML to investigate the LSC interactions with the BM microenvironment. In this model, targeted expression of the BCR-ABL gene in murine HSC via a tet-regulated SCL promoter results in development of a chronic phase CML-like disorder. We have reported that LSC capacity is restricted to BCR-ABL+ cells with long-term hematopoietic stem cell (LTHSC) phenotype(LSK Flt3-CD150+CD48-) (Blood 2010 116:1212A). LSC numbers are reduced in the BM but increased in the spleen of CML mice compared with LTHSC from control mice, suggesting that LSC have altered niche interactions. LSC also demonstrate altered trafficking with significant reduction in homing of IV injected LSC to BM, and markedly increased egress of intrafemorally injected LSC to the spleen, potentially related to reduced CXCL12 levels in the BM of CML mice. In addition, levels of several chemokines and cytokines, including MIP1α, MIP1β, MIP2, IL-1α, IL-1β, TNF-α, G-CSF and IL-6, were increased in CML BM, related to increased production by malignant hematopoietic cells. We investigated whether altered chemokine and cytokine expression was associated with altered capacity of the CML BM microenvironment to support LTHSC engraftment. LTHSC from control mice or LSC from CML mice were transplanted into irradiated CML or control recipients. There was reduced engraftment of both control LTHSC and CML LSC in the BM of CML compared to control recipients at 2 weeks after transplantation, associated with reduced homing to CML BM, potentially related to low BM CXCL12 levels. The numbers of control LTHSC in the BM of CML recipient mice remained low at 4 weeks post-transplantation, whereas the numbers of CML LSC increased to numbers similar to those seen in the BM of control recipients. Culture with CML BM supernatants (SN) resulted in impaired growth of control LTHSC compared to control BM SN. In contrast the growth of CML LSC was similar following culture with CML and control BM SN. Culture with individual factors at concentrations similar to those observed in CML BM (16ng/ml MIP1α, 8ng/ml MIP1β, 2.5ng/ml IL-1α, 3.5ng/ml IL-1β, 0.05ng/ml TNF-α) resulted in significantly reduced growth of normal LTHSC compared with CML LSC. These results indicate that diffusible factors produced by leukemic cells in the CML BM environment selectively inhibit normal LTHSC compared to CML LSC growth. Exposure of a murine stromal cell line to CML BM SN resulted in reduced CXCL12 mRNA levels compared to BM SN from control mice. The cytokine G-CSF, which was increased in CML BM SN, has been reported to reduce CXCL12 transcription. We observed significant reduction of CXCL12 mRNA levels in stromal cells cultured with G-CSF (0.2ng/ml), supporting a potential role for increased G-CSF production by leukemia cells in reduced CXCL12 production by CML BM stromal cells and reduced LSC retention in the BM. We evaluated whether defects in microenvironmental function in CML were affected by imatinib treatment. Treatment of CML mice with imatinib (200mg/kg/day, 2 weeks) led to reduction in MIP1α, MIP1β, IL-1β, and IL-6 levels in BM cells. Engraftment of normal LTHSC was significantly enhanced in BM of CML recipients pre-treated with imatinib. Results obtained with the mouse model were validated using specimens obtained from CML patients. CXCL12 mRNA levels were significantly reduced in human CML compared to normal MNCs, whereas expression of MIP1α, MIP-2, IL-1α and IL-1β were increased in CML MNCs, consistent with results obtained with the mouse model. Coculture with CML MNC conditioned medium (CM) resulted in selective impairment of growth of normal CD34+CD38- primitive progenitors compared to CM from normal MNC, but did not inhibit growth of CML progenitors. We conclude that leukemia-induced alterations in BM cytokine and chemokine levels contribute to altered LSC lodgment and to selective impairment of growth of normal LTHSC in the CML BM microenvironment, leading to a relative growth advantage for CML LSC over normal LTHSC and expansion of the leukemic clone. Disclosures: Holyoake: Novartis: Research Funding; Bristol Myers Squibb: Research Funding.


2021 ◽  
Author(s):  
Suwei Tang ◽  
Ping Xu ◽  
Shaoqiong Xie ◽  
Wencheng Jiang ◽  
Jiajing Lu ◽  
...  

Abstract Background: Psoriasis is a relatively common autoimmune inflammatory skin disease with a chronic etiology. The present study was designed to detect novel biomarkers and pathways associated with psoriasis incidence. Methods: Differentially expressed genes (DEGs) associated with psoriasis in the Gene Expression Omnibus (GEO) database were identified, and their functional roles and interactions were then annotated and evaluated through GO, KEGG, and gene set variation (GSVA) analyses. In addition, the STRING database was leveraged to construct a protein-protein interaction (PPI) network, and key hub genes from this network were validated as being relevant through receiver operating characteristic (ROC) curve analyses of three additional GEO datasets. The CIBERSORT database was additionally used to assess the relationship between these gene expression-related findings and immune cell infiltration. Results: In total 197 psoriasis-related DEGs were identified and found to primarily be associated with the NOD-like receptor, IL-17, and cytokine-cytokine receptor interaction signaling pathways. GSVA revealed significant differences between normal and lesional groups (P < 0.05), while PPI network analyses identified CXCL10 as the hub gene with the highest degree value, whereas IRF7, IFIT3, OAS1, GBP1, and ISG15 were promising candidate genes for the therapeutic treatment of psoriasis. ROC analyses confirmed that these 6 hub genes exhibited good diagnostic efficacy (AUC > 70%), and were predicted to be associated with increased sensitivity to 10 drugs (P < 0.01). The CIBERSORT database further predicted that these hub genes were associated with infiltration by 22 different immune cell types. Conclusion: These results offer a robust foundation for future studies of the molecular basis for psoriasis, potentially guiding efforts to treat this common and disruptive disease.


Author(s):  
Yu Jiang ◽  
Chen Zhang ◽  
Lujue Long ◽  
Lihua Ge ◽  
Jing Guo ◽  
...  

Objective: Articular cartilage injury is common and difficult to treat clinically because of the characteristics of the cartilage. Bone marrow-derived mesenchymal stem cell (BMSC)-mediated cartilage regeneration is a promising therapy for treating articular cartilage injury. BMSC differentiation is controlled by numerous molecules and signaling pathways in the microenvironment at both the transcriptional and post-transcriptional levels. However, the possible function of super enhancer long non-coding RNAs (SE-lncRNAs) in the chondrogenic differentiation of BMSCs is still unclear. Our intention was to explore the expression profile of SE-lncRNAs and potential target genes regulated by SE-lncRNAs during chondrogenic differentiation in BMSCs.Materials and Methods: In this study, we conducted a human Super-Enhancer LncRNA Microarray to investigate the differential expression profile of SE-lncRNAs and mRNAs during chondrogenic differentiation of BMSCs. Subsequent bioinformatic analysis was performed to clarify the important signaling pathways, SE-lncRNAs, and mRNAs associated with SE-lncRNAs regulating the chondrogenic differentiation of BMSCs.Results: A total of 77 SE-lncRNAs were identified, of which 47 were upregulated and 30 were downregulated during chondrogenic differentiation. A total of 308 mRNAs were identified, of which 245 were upregulated and 63 were downregulated. Some pathways, such as focal adhesion, extracellular matrix (ECM)–receptor interaction, transforming growth factor-β (TGF-β) signaling pathway, and PI3K–Akt signaling pathway, were identified as the key pathways that may be implicated in the chondrogenic differentiation of BMSCs. Moreover, five potentially core regulatory mRNAs (PMEPA1, ENC1, TES, CDK6, and ADIRF) and 37 SE-lncRNAs in chondrogenic differentiation were identified by bioinformatic analysis.Conclusion: We assessed the differential expression levels of SE-lncRNAs and mRNAs, along with the chondrogenic differentiation of BMSCs. By analyzing the interactions and co-expression, we identified the core SE-lncRNAs and mRNAs acting as regulators of the chondrogenic differentiation potential of BMSCs. Our study also provided novel insights into the mechanism of BMSC chondrogenic and cartilage regeneration.


2021 ◽  
Author(s):  
Chenghai Li

Mesenchymal stem cell/stromal cells (MSCs) can differentiate into a variety of cell types, including osteocytes, adipocytes and chondrocytes. MSCs are present in the multiple types of adult tissue, such as bone marrow, adipose tissue, and various neonatal birth-associated tissues. Given their self-renewal and differentiation potential, immunomodulatory and paracrine properties, and lacking major histocompatibility complex (MHC) class II molecules, MSCs have attracted much attention for stem cell-based translational medicine research. Due to a very low frequency in different types of tissue, MSCs can be isolated and expanded in vitro to derive sufficient cell numbers prior to the clinical applications. In this chapter, the methodology to obtain primary bone marrow-derived MSCs as well as their in vitro culture expansion will be described. To assess the functional properties, differentiation assays, including osteogenesis, chondrogenesis and adipogenesis, 3-D culture of MSCs and co-culture of MSCs and tumor cells are also provided. Finally, the long-term culture associated alterations of MSCs, such as replicative senescence and spontaneous transformation, will be discussed for better understanding of the use of MSCs at the early stages for safe and effective cell-based therapy.


Blood ◽  
2021 ◽  
Author(s):  
Zhuo Yu ◽  
Wenqian Yang ◽  
Xiaoxiao He ◽  
Chiqi Chen ◽  
Wenrui Li ◽  
...  

Bone marrow niche cells have been reported to fine-tune HSC stemness via direct interaction or secreted components. Nevertheless, how niche cells control HSC activities remains largely unknown. We previously showed that angiopoietin-like protein 2 (ANGPTL2) can support the ex vivo expansion of HSCs by binding to human leukocyte immunoglobulin-like receptor B2 (LILRB2). However, how ANGPTL2 from specific niche cell types regulates HSC activities under physiological conditions is still not clear. Herein, we generated an Angptl2-flox/flox transgenic mouse line and conditionally deleted Angptl2 expression in several niche cells, including Cdh5+ or Tie2+ endothelial cells, Prx1+ mesenchymal stem cells and Pf4+ megakaryocytes, to evaluate its role in the regulation of HSC fate. Interestingly, we demonstrated that only endothelial cell-derived ANGPTL2 and not ANGPTL2 from other niche cell types plays important roles in supporting repopulation capacity, quiescent status and niche localization. Mechanistically, ANGPTL2 enhances PPARD expression to transactivate G0s2 to sustain the perinuclear localization of nucleolin to prevent HSCs from entering the cell cycle. These findings reveal that endothelial cell-derived ANGPTL2 serves as a critical niche component to maintain HSC stemness, which may benefit the understanding of stem cell biology in bone marrow niches and the development of a unique strategy for the ex vivo expansion of HSCs.


Sign in / Sign up

Export Citation Format

Share Document