scholarly journals Integrated Bioinformatic Analysis of Key Biomarkers and Signaling Pathways in Psoriasis

Author(s):  
Suwei Tang ◽  
Ping Xu ◽  
Shaoqiong Xie ◽  
Wencheng Jiang ◽  
Jiajing Lu ◽  
...  

Abstract Background: Psoriasis is a relatively common autoimmune inflammatory skin disease with a chronic etiology. The present study was designed to detect novel biomarkers and pathways associated with psoriasis incidence. Methods: Differentially expressed genes (DEGs) associated with psoriasis in the Gene Expression Omnibus (GEO) database were identified, and their functional roles and interactions were then annotated and evaluated through GO, KEGG, and gene set variation (GSVA) analyses. In addition, the STRING database was leveraged to construct a protein-protein interaction (PPI) network, and key hub genes from this network were validated as being relevant through receiver operating characteristic (ROC) curve analyses of three additional GEO datasets. The CIBERSORT database was additionally used to assess the relationship between these gene expression-related findings and immune cell infiltration. Results: In total 197 psoriasis-related DEGs were identified and found to primarily be associated with the NOD-like receptor, IL-17, and cytokine-cytokine receptor interaction signaling pathways. GSVA revealed significant differences between normal and lesional groups (P < 0.05), while PPI network analyses identified CXCL10 as the hub gene with the highest degree value, whereas IRF7, IFIT3, OAS1, GBP1, and ISG15 were promising candidate genes for the therapeutic treatment of psoriasis. ROC analyses confirmed that these 6 hub genes exhibited good diagnostic efficacy (AUC > 70%), and were predicted to be associated with increased sensitivity to 10 drugs (P < 0.01). The CIBERSORT database further predicted that these hub genes were associated with infiltration by 22 different immune cell types. Conclusion: These results offer a robust foundation for future studies of the molecular basis for psoriasis, potentially guiding efforts to treat this common and disruptive disease.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yu Zeng ◽  
Nanhong Li ◽  
Zhenzhen Zheng ◽  
Riken Chen ◽  
Min Peng ◽  
...  

Background. Pulmonary arterial hypertension (PAH) is a disease or pathophysiological syndrome which has a low survival rate with abnormally elevated pulmonary artery pressure caused by known or unknown reasons. In addition, the pathogenesis of PAH is not fully understood. Therefore, it has become an urgent matter to search for clinical molecular markers of PAH, study the pathogenesis of PAH, and contribute to the development of new science-based PAH diagnosis and targeted treatment methods. Methods. In this study, the Gene Expression Omnibus (GEO) database was used to downloaded a microarray dataset about PAH, and the differentially expressed genes (DEGs) between PAH and normal control were screened out. Moreover, we performed the functional enrichment analyses and protein-protein interaction (PPI) network analyses of the DEGs. In addition, the prediction of miRNA and transcriptional factor (TF) of hub genes and construction miRNA-TF-hub gene network were performed. Besides, the ROC curve was used to evaluate the diagnostic value of hub genes. Finally, the potential drug targets for the 5 identified hub genes were screened out. Results. 69 DEGs were identified between PAH samples and normal samples. GO and KEGG pathway analyses revealed that these DEGs were mostly enriched in the inflammatory response and cytokine-cytokine receptor interaction, respectively. The miRNA-hub genes network was conducted subsequently with 131 miRNAs, 7 TFs, and 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) which screened out via constructing the PPI network. 17 drugs interacted with 5 hub genes were identified. Conclusions. Through bioinformatic analysis of microarray data sets, 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) were identified from DEGs between control samples and PAH samples. Studies showed that the five hub genes might play an important role in the development of PAH. These 5 hub genes might be potential biomarkers for diagnosis or targets for the treatment of PAH. In addition, our work also indicated that paying more attention on studies based on these 5 hub genes might help to understand the molecular mechanism of the development of PAH.


2021 ◽  
Author(s):  
Cailin xue ◽  
Peng gao ◽  
Xudong zhang ◽  
Xiaohan cui ◽  
Lei jin ◽  
...  

Abstract Background: Abnormal methylation of DNA sequences plays an important role in the development and progression of pancreatic cancer (PC). The purpose of this study was to identify abnormal methylation genes and related signaling pathways in PC by comprehensive bioinformatic analysis of three datasets in the Gene Expression Omnibus (GEO). Methods: Datasets of gene expression microarrays (GSE91035, GSE15471) and gene methylation microarrays (GSE37480) were downloaded from the GEO database. Aberrantly methylated-differentially expressed genes (DEGs) were analysis by GEO2R software. GO and KEGG enrichment analyses of selected genes were performed using DAVID database. A protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. Core module analysis was performed by Mcode in Cytoscape. Hub genes were obtained by CytoHubba app. in Cytoscape software. Results: A total of 267 hypomethylation-high expression genes, which were enriched in biological processes of cell adhesion, biological adhesion and regulation of signaling were obtained. KEGG pathway enrichment showed ECM-receptor interaction, Focal adhesion and PI3K-Akt signaling pathway. The top 5 hub genes of PPI network were EZH2, CCNA2, CDC20, KIF11, UBE2C. As for hypermethylation-low expression genes, 202 genes were identified, which were enriched in biological processes of cellular amino acid biosynthesis process and positive regulation of PI3K activity, etc. The pathways enriched were the pancreatic secretion and biosynthesis of amino acids pathways, etc. The five significant hub genes were DLG3, GPT2, PLCB1, CXCL12 and GNG7. In addition, five genes, including CCNA2, KIF11, UBE2C, PLCB1 and GNG7, significantly associated with patient's prognosis were also identified. Conclusion: Novel genes with abnormal expression were identified, which will help us further understand the molecular mechanism and related signaling pathways of PC, and these aberrant genes could possibly serve as biomarkers for precise diagnosis and treatment of PC.


2021 ◽  
Author(s):  
Qi Zhou ◽  
Xin Xiong ◽  
Min Tang ◽  
Yingqing Lei ◽  
Hongbin Lv

Abstract BackgroundDiabetic retinopathy (DR), a severe complication of diabetes mellitus (DM), is a global social and economic burden. However, the pathological mechanisms mediating DR are not well-understood. This study aimed to identify differentially methylated and differentially expressed hub genes (DMGs and DEGs, respectively) and associated signaling pathways, and to evaluate immune cell infiltration involved in DR. MethodsTwo publicly available datasets were downloaded from the Gene Expression Omnibus database. Transcriptome and epigenome microarray data and multi-component weighted gene coexpression network analysis (WGCNA) were utilized to determine hub genes within DR. One dataset was utilized to screen DEGs and to further explore their potential biological functions using functional annotation analysis. A protein-protein interaction network was constructed. Gene set enrichment and variation analyses (GSVA and GSEA, respectively) were utilized to identify the potential mechanisms mediating the function of hub genes in DR. Infiltrating immune cells were evaluated in one dataset using CIBERSORT. The Connectivity Map (CMap) database was used to predict potential therapeutic agents. ResultsIn total, 673 DEGs (151 upregulated and 522 downregulated genes) were detected. Gene expression was significantly enriched in the extracellular matrix and sensory organ development, extracellular matrix organization, and glial cell differentiation pathways. Through WGCNA, one module was found to be significantly related with DR (r=0.34, P =0.002), and 979 hub genes were identified. By comparing DMGs, DEGs, and genes in WGCNA, we identified eight hub genes in DR ( AKAP13, BOC, ACSS1, ARNT2, TGFB2, LHFPL2, GFPT2, TNFRSF1A ), which were significantly enriched in critical pathways involving coagulation, angiogenesis, TGF-β, and TNF-α-NF-κB signaling via GSVA and GSEA. Immune cell infiltration analysis revealed that activated natural killer cells, M0 macrophages, resting mast cells, and CD8 + T cells may be involved in DR. ARNT2, TGFB2, LHFPL2 , and AKAP13 expression were correlated with immune cell processes, and ZG-10, JNK-9L, chromomycin-a3, and calyculin were identified as potential drugs against DR. Finally, TNFRSF1A , GFPT2 , and LHFPL2 expression levels were consistent with the bioinformatic analysis. ConclusionsOur results are informative with respect to correlations between differentially methylated and expressed hub genes and immune cell infiltration in DR, providing new insight towards DR drug development and treatment.


Author(s):  
Qian Zhao ◽  
Ning Xu ◽  
Hui Guo ◽  
Jianguo Li

Background: Sepsis is a life-threatening disease caused by the dysregulated host response to the infection, and being the major cause of death to patients in intensive care unit (ICU). Objective: Early diagnosis of sepsis could significantly reduce in-hospital mortality. Though generated from infection, the development of sepsis follows its own psychological process and disciplines, alters with gender, health status and other factors. Hence, the analysis of mass data by bioinformatic tools and machine learning is a promising method for exploring early diagnosis manners. Method: We collected miRNA and mRNA expression data of sepsis blood samples from Gene Expression Omnibus (GEO) and ArrayExpress databases, screened out differentially expressed genes (DEGs) by R software, predicted miRNA targets on TargetScanHuman and miRTarBase websites, conducted Gene Ontology (GO) term and KEGG pathway enrichment based on overlapping DEGs. The STRING database and Cytoscape were used to build protein-protein interaction (PPI) network and predict hub genes. Then we constructed a Random Forest model by using the hub genes to assess sample type. Results: Bioinformatic analysis of GEO dataset revealed 46 overlapping DEGs in sepsis. The PPI network analysis identified five hub genes, SOCS3, KBTBD6, FBXL5, FEM1C and WSB1. Random Forest model based on these five hub genes was used to assess GSE95233 and GSE95233 datasets, and the area under curve (AUC) of ROC are 0.900 and 0.7988, respectively, which confirmed the efficacy of this model. Conclusion: The integrated analysis of gene expression in sepsis and the effective Random Forest model built in this study may provide promising diagnostic methods for sepsis.


2021 ◽  
Vol 24 (5-6) ◽  
pp. 267-279
Author(s):  
Xianyang Zhu ◽  
Wen Guo

<b><i>Background:</i></b> This study aimed to screen and validate the crucial genes involved in osteoarthritis (OA) and explore its potential molecular mechanisms. <b><i>Methods:</i></b> Four expression profile datasets related to OA were downloaded from the Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) from 4 microarray patterns were identified by the meta-analysis method. The weighted gene co-expression network analysis (WGCNA) method was used to investigate stable modules most related to OA. In addition, a protein-protein interaction (PPI) network was built to explore hub genes in OA. Moreover, OA-related genes and pathways were retrieved from Comparative Toxicogenomics Database (CTD). <b><i>Results:</i></b> A total of 1,136 DEGs were identified from 4 datasets. Based on these DEGs, WGCNA further explored 370 genes included in the 3 OA-related stable modules. A total of 10 hub genes were identified in the PPI network, including <i>AKT1</i>, <i>CDC42</i>, <i>HLA-DQA2</i>, <i>TUBB</i>, <i>TWISTNB</i>, <i>GSK3B</i>, <i>FZD2</i>, <i>KLC1</i>, <i>GUSB</i>, and <i>RHOG</i>. Besides, 5 pathways including “Lysosome,” “Pathways in cancer,” “Wnt signaling pathway,” “ECM-receptor interaction” and “Focal adhesion” in CTD and enrichment analysis and 5 OA-related hub genes (including <i>GSK3B, CDC42, AKT1, FZD2</i>, and <i>GUSB</i>) were identified. <b><i>Conclusion:</i></b> In this study, the meta-analysis was used to screen the central genes associated with OA in a variety of gene expression profiles. Three OA-related modules (green, turquoise, and yellow) containing 370 genes were identified through WGCNA. It was discovered through the gene-pathway network that <i>GSK3B, CDC42, AKT1, FZD2</i>, <i>and GUSB</i> may be key genes related to the progress of OA and may become promising therapeutic targets.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4704 ◽  
Author(s):  
Qiang Liu ◽  
Xiujie Yin ◽  
Mingzhu Li ◽  
Li Wan ◽  
Liqiao Liu ◽  
...  

Occlusive artery disease (CAD) is the leading cause of death worldwide. Bypass graft surgery remains the most prevalently performed treatment for occlusive arterial disease, and veins are the most frequently used conduits for surgical revascularization. However, the clinical efficacy of bypass graft surgery is highly affected by the long-term potency rates of vein grafts, and no optimal treatments are available for the prevention of vein graft restenosis (VGR) at present. Hence, there is an urgent need to improve our understanding of the molecular mechanisms involved in mediating VGR. The past decade has seen the rapid development of genomic technologies, such as genome sequencing and microarray technologies, which will provide novel insights into potential molecular mechanisms involved in the VGR program. Ironically, high throughput data associated with VGR are extremely scarce. The main goal of the current study was to explore potential crucial genes and pathways associated with VGR and to provide valid biological information for further investigation of VGR. A comprehensive bioinformatics analysis was performed using high throughput gene expression data. Differentially expressed genes (DEGs) were identified using the R and Bioconductor packages. After functional enrichment analysis of the DEGs, protein–protein interaction (PPI) network and sub-PPI network analyses were performed. Finally, nine potential hub genes and fourteen pathways were identified. These hub genes may interact with each other and regulate the VGR program by modulating the cell cycle pathway. Future studies focusing on revealing the specific cellular and molecular mechanisms of these key genes and pathways involved in regulating the VGR program may provide novel therapeutic targets for VGR inhibition.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10419
Author(s):  
Jingyi Ding ◽  
Yanxi Liu ◽  
Yu Lai

Background Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant neoplasm. It is necessary to improve the understanding of the underlying molecular mechanisms and identify the key genes and signaling pathways involved in PDAC. Methods The microarray datasets GSE28735, GSE62165, and GSE91035 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified by integrated bioinformatics analysis, including protein–protein interaction (PPI) network, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The PPI network was established using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. GO functional annotation and KEGG pathway analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery. Hub genes were validated via the Gene Expression Profiling Interactive Analysis tool (GEPIA) and the Human Protein Atlas (HPA) website. Results A total of 263 DEGs (167 upregulated and 96 downregulated) were common to the three datasets. We used STRING and Cytoscape software to establish the PPI network and then identified key modules. From the PPI network, 225 nodes and 803 edges were selected. The most significant module, which comprised 11 DEGs, was identified using the Molecular Complex Detection plugin. The top 20 hub genes, which were filtered by the CytoHubba plugin, comprised FN1, COL1A1, COL3A1, BGN, POSTN, FBN1, COL5A2, COL12A1, THBS2, COL6A3, VCAN, CDH11, MMP14, LTBP1, IGFBP5, ALB, CXCL12, FAP, MATN3, and COL8A1. These genes were validated using The Cancer Genome Atlas (TCGA) and Genotype–Tissue Expression (GTEx) databases, and the encoded proteins were subsequently validated using the HPA website. The GO analysis results showed that the most significantly enriched biological process, cellular component, and molecular function terms among the 20 hub genes were cell adhesion, proteinaceous extracellular matrix, and calcium ion binding, respectively. The KEGG pathway analysis showed that the 20 hub genes were mainly enriched in ECM–receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and protein digestion and absorption. These findings indicated that FBN1 and COL8A1 appear to be involved in the progression of PDAC. Moreover, patient survival analysis performed via the GEPIA using TCGA and GTEx databases demonstrated that the expression levels of COL12A1 and MMP14 were correlated with a poor prognosis in PDAC patients (p < 0.05). Conclusions The results demonstrated that upregulation of MMP14 and COL12A1 is associated with poor overall survival, and these might be a combination of prognostic biomarkers in PDAC.


2021 ◽  
Author(s):  
Ling Ai Zou ◽  
Qichao Jian

Abstract Background Although several studies have attempted to investigate the aetiology and mechanism of psoriasis, the precise molecular mechanism remains unclear. Our study aimed to identify the hub genes and associated pathways that promote its pathogenesis in psoriasis, which would be helpful for the discovery of diagnostic and therapeutic markers. Methods GSE30999, GSE34248, GSE41662, and GSE50790 datasets were extracted from the Gene Expression Omnibus (GEO) database. The GEO profiles were integrated to obtain differentially expressed genes (DEGs) using the affy package in R software, with |logFC|> 1.5 and adjusted P < 0.05. The DEGs were utilised for Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) network analyses. Hub genes were identified using Cytoscape and enriched for analysis in www.bioinformatics.com.cn. These hub genes were validated in the four aforementioned datasets and M5-induced HaCaT cells using real-time quantitative polymerase chain reaction (RT-qPCR). Results A total of 359 DEGs were identified, which were mostly associated with responses to bacterium, defence responses to other organism, and antimicrobial humoral response. These DEGs were mostly enriched in the steroid hormone biosynthesis pathway, NOD-like receptor signaling pathway, and cytokine-cytokine receptor interaction. PPI network analysis indicated seven genes (CXCL1, ISG15, CXCL10, STAT1, OASL, IFIT1, and IFIT3) as the probable hub genes of psoriasis; CXCL10 had a positive correlation with the other six hub genes. The chord plot results further supported the GO and KEGG analysis results of the 359 DEGs. Seven predicted hub genes were validated to be upregulated in four datasets and M5-induced HaCaT cells using RT-qPCR. Conclusions The pathogenesis of psoriasis may be associated with seven hub genes (CXCL1, ISG15, CXCL10, STAT1, OASL, IFIT1, and IFIT3) and pathways, such as the NOD-like receptor signaling pathway and cytokine-cytokine receptor interaction. These hub genes, especially CXCL10, can be used as potential biomarkers in psoriasis.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yaowei Li ◽  
Li Li

Abstract Background Ovarian carcinoma (OC) is a common cause of death among women with gynecological cancer. MicroRNAs (miRNAs) are believed to have vital roles in tumorigenesis of OC. Although miRNAs are broadly recognized in OC, the role of has-miR-182-5p (miR-182) in OC is still not fully elucidated. Methods We evaluated the significance of miR-182 expression in OC by using analysis of a public dataset from the Gene Expression Omnibus (GEO) database and a literature review. Furthermore, we downloaded three mRNA datasets of OC and normal ovarian tissues (NOTs), GSE14407, GSE18520 and GSE36668, from GEO to identify differentially expressed genes (DEGs). Then the targeted genes of hsa-miR-182-5p (TG_miRNA-182-5p) were predicted using miRWALK3.0. Subsequently, we analyzed the gene overlaps integrated between DEGs in OC and predicted target genes of miR-182 by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network and the prognostic effects of the hub genes were analyzed. Results A common pattern of up-regulation for miR-182 in OC was found in our review of the literature. A total of 268 DEGs, both OC-related and miR-182-related, were identified, of which 133 genes were discovered from the PPI network. A number of DEGs were enriched in extracellular matrix organization, pathways in cancer, focal adhesion, and ECM-receptor interaction. Two hub genes, MCM3 and GINS2, were significantly associated with worse overall survival of patients with OC. Furthermore, we identified covert miR-182-related genes that might participate in OC by network analysis, such as DCN, AKT3, and TIMP2. The expressions of these genes were all down-regulated and negatively correlated with miR-182 in OC. Conclusions Our study suggests that miR-182 is essential for the biological progression of OC.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yajun Deng ◽  
Hanyun Ma ◽  
Jinyong Hao ◽  
Qiqi Xie ◽  
Ruochen Zhao

Pancreatic cancer (PC) is one of the most malignant tumors. Despite considerable progress in the treatment of PC, the prognosis of patients with PC is poor. The aim of this study was to identify potential biomarkers for the diagnosis and prognosis of PC. First, the original data of three independent mRNA expression datasets were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases and screened for differentially expressed genes (DEGs) using the R software. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the DEGs were performed, and a protein-protein interaction (PPI) network was constructed to screen for hub genes. The hub genes were analyzed for genetic variations, as well as for survival, prognostic, and diagnostic value, using the cBioPortal and Gene Expression Profiling Interactive Analysis (GEPIA) databases and the pROC package. After screening for potential biomarkers, the mRNA and protein levels of the biomarkers were verified at the tissue and cellular levels using the Cancer Cell Line Encyclopedia, GEPIA, and the Human Protein Atlas. As a result, a total of 248 DEGs were identified. The GO terms enriched in DEGs were related to the separation of mitotic sister chromatids and the binding of the spindle to the extracellular matrix. The enriched pathways were associated with focal adhesion, ECM-receptor interaction, and phosphatidylinositol 3-kinase (PI3K)/AKT signaling. The top 20 genes were selected from the PPI network as hub genes, and based on the analysis of multiple databases, MCM2 and NUSAP1 were identified as potential biomarkers for the diagnosis and prognosis of PC. In conclusion, our results show that MCM2 and NUSAP1 can be used as potential biomarkers for the diagnosis and prognosis of PC. The study also provides new insights into the underlying molecular mechanisms of PC.


Sign in / Sign up

Export Citation Format

Share Document