scholarly journals Pharmacokinetics comparison of four major bio-active components in normal and blood stasis rats after administration of Naoxintong Capsule by UPLC-TQ/MS

2020 ◽  
Author(s):  
Wei-Xia Li ◽  
Pan-pan Chen ◽  
Shuqi Zhang ◽  
Man-man Li ◽  
Hui Zhang ◽  
...  

Abstract Background Blood stasis is one major cause of cardiovascular and cerebrovascular diseases. Naoxintong capsule (NXTC), a Chinese patent medicine, has been widely employed in the prevention and treatment against cardiovascular and cerebrovascular diseases. However, the pharmacokinetics comparison of NXTC in normal and blood stasis rats were remain obscured. Methods Acute blood stasis rats were induced by being placed in ice-cold water during the interval between two injections of adrenaline hydrochloride. Normal and blood stasis rats were administrated of NXTC suspension at the dosage of 5 g⋅kg -1 , and blood was collected at different time points after then. Concentrations of four main components including caffeic acid, ferulic acid, formononetin and tanshinone IIA in rat plasma were quantified by UPLC-TQ/MS. The pharmacokinetic parameters were calculated by Phoenix WinNonlin v6.2 software. Results It was found that C max , AUC all , AUC INF_obs , Vz_F_obs and MRT last of ferulic acid, AUC all, Vz_F_obs and MRT last of caffeic acid in blood stasis rats were significantly different ( P < 0.05) from normal rats. Compared with normal rats, C max of ferulic acid and formononetin decreased significantly in the plasma of acute blood stasis rats, AUC all of caffeic acid and ferulic acid decreased notably, AUC INF_obs of ferulic acid decreased remarkably, Vz_F_obs and MRT last of ferulic acid and caffeic acid increased reversely. It is suggested that the absorption of the four components of NXTC in acute blood stasis rats was weakened, and the elimination time was prolonged. Conclusions The significant difference in some different parameters of the 4 NXTC components in normal and blood stasis rats might be caused by increasing of blood viscosity and slowing down of blood flow in acute blood stasis rats. The pharmacokinetic study under pathological condition provided important information for more rational use of NXTC in clinical situations.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jin Li ◽  
Yang Bai ◽  
Yun Bai ◽  
Ruichao Zhu ◽  
Wei Liu ◽  
...  

Naoxintong capsule (NXTC) was a famous patent medicine of Traditional Chinese Medicine (TCM) to treat cerebrovascular diseases in China. An LC-MS/MS method was developed for simultaneous determination of 11 major ingredients (paeoniflorin, ecdysterone, amygdalin, mulberroside A, caffeic acid, ferulic acid, salvianolic acid B, astragaloside IV, formononetin, cryptotanshinone, and tanshinone IIA) in NXTC in rat plasma. All analytes were separated on an Eclipse plus C18 column using a gradient mobile phase system of acetonitrile-0.1% formic acid aqueous solution. The lower limits of quantification of 11 ingredients were between 0.075 and 10 ng mL−1. The precision was less than 15% and the accuracies were between 85% and 115%. The results showed that caffeic acid, ferulic acid, formononetin, cryptotanshinone, and tanshinone IIA could be detected after oral administration of NXTC. The validated method was successfully applied to pharmacokinetic study of the caffeic acid, ferulic acid, formononetin, cryptotanshinone, and tanshinone IIA in rats after oral administration of NXTC at single and triple dose.


2015 ◽  
Vol 3 (5) ◽  
pp. 370-375 ◽  
Author(s):  
Maryam Araghi ◽  
Zeinab Moslehi ◽  
Abdorreza Mohammadi Nafchi ◽  
Amir Mostahsan ◽  
Nima Salamat ◽  
...  

2020 ◽  
Vol 103 (6) ◽  
pp. 1633-1638
Author(s):  
Yu Zhang ◽  
Qian Li ◽  
Yanmei Feng ◽  
Lan Yang ◽  
Daiyu Qiu ◽  
...  

Abstract Background As known to us, HPLC method was often used to determine the contents of Angelicae sinesis Radix. In view of the shortcomings of HPLC method, qNMR has prominent advantages in determining the contents of bioactive components in the quantitative and qualitative analysis of Angelicae sinesis Radix. Objective In this study, a quick, simple, and accurate method was established to determine the components of ferulic acid, coniferyl ferulate, and ligustilide in Angelicae sinesis Radix. Method Using dimethyl sulfoxide-d6(DMSO-d6) as the test solvent and pyrazine as the internal standard substance, 1H-qNMR measurement was performed on a 600 MHz spectrometer. The quantitative resonance peaks of pyrazine, ferulic acid, ligustilide, and coniferyl ferulate were at δ8.66 ppm, δ6.35–6.37 ppm, δ5.53–5.55 ppm, and δ6.50–6.53 ppm, respectively. Results The linear relationship, limit of detection, limit of quantification, precision, stability, and recovery were verified and the results were good. On the other hand, it was verified by HPLC, and the HPLC used for verification passed the methodological investigation of linearity, precision, repeatability, stability, and recovery, and the results were good. In addition, no significant difference in results was found between the 1H-qNMR and HPLC-UV methods in determining the content of three components in three batches of Angelicae sinesis Radix. Conclusions The method can be used for simultaneous determination of three active components, and providing a scientific basis for the overall quality evaluation and quality control of Angelicae sinesis Radix. Hightlights In this study, 1H-qNMR was used to determine ferulic acid, coniferyl ferulate and ligustilide in Angelicae Sinensis Radix for the first time.


2019 ◽  
Vol 15 (2) ◽  
pp. 130-137
Author(s):  
Hui Jiang ◽  
Lianhao Fu ◽  
Yu Wang ◽  
Shaozhi Wang ◽  
Xiaoxu Zhang ◽  
...  

Background: Jingzhiguanxin (JZGX) tablet, a traditional Chinese prescription, is commonly used for treating coronary heart disease and angina pectoris in the clinic. There are six active components (Danshensu (DSS), Protocatechuic aldehyde (PD), Paeoniflorin (PF), Ferulic acid (FA), Salvianolic acid B (Sal B) and Tanshinone IIA (TA)) in JZGX tablet. </P><P> Objective: In this paper, a simple and reliable method was used for simultaneous determining the six active components by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Methods: These six active components were separated on an Agilent Zorbax Eclipse XDB-C18 column (150 mmx4.6 mm, 5 µm) at 30 °C. Acetonitrile (A), methanol (B) and 0.5% H3PO4 aqueous solution (C) were used as mobile phase for gradient elution. The flow rate was 1 mL/min and the detection wavelengths were set at 280 nm for DSS, PD and Sal B, 230 nm for PF, 320 nm for FA and 270 nm for TA, respectively. Results: All of the six components showed good linearity regressions (r2≥0.9997) in the detected concentration range. The recovery rates and coefficient of variation (CV) for all analytes were 98.66%- 100.18% and 0.75%-1.89%, respectively. This method was successfully applied to simultaneously determine the six components in JZGX tablet from different batches and manufacturers. Conclusion: The validated method can be used in routine quality control analysis of JZGX tablet without any interference.


2018 ◽  
Vol 15 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Maria A. Morosanova ◽  
Anton S. Fedorov ◽  
Elena I. Morosanova

Background: The consumption of antioxidants, including phenolic compounds, is considered important for preventing the oxidative damage diseases and ageing. The total polyphenol content (TPC) is the parameter used to estimate the quality of plant-derived products. Methods: Phenol oxidase activity of green bean (Phaseolus vulgaris) crude extract (in the presence of hydrogen peroxide) and banana (Musa sp.) pulp crude extract has been studied spectrophotometrically using catechol, gallic acid, caffeic acid, ferulic acid, and quercetin as substrates. All studied compounds have been oxidized in the presence of green bean crude extract and hydrogen peroxide; all studied compounds except ferulic acid have been oxidized in the presence of banana pulp crude extract. Michaelis constants (Km) and maximum reaction rates (Vmax) have been determined for oxidation in the presence of green bean crude extract and hydrogen peroxide (Km are 3.8×10-4 M, 1.6×10-3 M, 2.2×10-4 M, 2.3×10-4 M, 1.4×10-4 M and Vmax are 0.046 min-1, 0.102 min-1, 0.185 min-1, 0.053 min-1, 0.041 min-1 for catechol, gallic acid, caffeic acid, ferulic acid, and quercetin, respectively) and for oxidation in the presence of banana pulp crude extract (Km are 1.6×10-3 M, 3.8×10-3 M, 2.2×10-3 M, 4.2×10-4 M and Vmax are 0.058 min-1, 0.025 min-1, 0.027 min-1, 0.015 min-1 for catechol, gallic acid, caffeic acid, and quercetin, respectively). The influence of 3-methyl-2-benzothiazolinone hydrazone (MBTH) on the oxidation reactions kinetics has been studied: Michaelis constants values decrease and maximum reaction rates increase, which contributes to the increase in sensitivity of the determination. Results: Kinetic procedures of Total Polyphenol Content (TPC) determination using crude plants extracts in the presence of MBTH have been proposed (time of analysis is 1 min). For gallic acid (used as a standard for TPC determination) detection limit is 5.3×10-5 M, quantitation limit is 1.8×10-4 M, and linear range is 1.8×10-4 - 1.3×10-3 M for green bean crude extract; detection limit is 2.9×10-5 M, quantitation limit is 9.5×10-5 M, and linear range is 9.5×10-5 - 2.4×10-3 M for banana pulp crude extract. Proposed procedures are characterized by higher interference thresholds for sulfites, ascorbic acid, and citric acid compared to pure enzymes (horseradish peroxidase and mushroom tyrosinase) in the same conditions. Compared with standard Folin-Ciocalteu (FC) method the procedures described in this work are also characterized by less interference and more rapid determination. Conclusion: The procedures have been applied to TPC determination in tea, coffee, and wine samples. The results agree with the FC method for tea and coffee samples and are lower for wine samples, probably, due to sulfites interference.


1996 ◽  
Vol 41 (6) ◽  
pp. 1507-1510 ◽  
Author(s):  
Thi Bach Tuyet Lam ◽  
Kenji Iiyama ◽  
Bruce A. Stone

1979 ◽  
Vol 57 (7) ◽  
pp. 986-994 ◽  
Author(s):  
Satish K. Sharma ◽  
Stewart A. Brown

Two discrete furanocoumarin (5- and 8-) O-methyltransferases and a caffeic acid 3-O-methyl-transferase from cell cultures of Ruta graveolens L. have been copurified by affinity chromatography on 1,6-diaminohexane agarose (AH-Sepharose 4B) linked with 5-adenosyl-L-homocysteine (SAH). The furanocoumarin O-methyltransferases, which transfer a methyl group from S-adenosyl-L-methionine (SAM) to the 5- or 8-hydroxyls of linear furanocoumarins, were not retarded by 5-(3-carboxypropanamido)-xanthotoxin (CPAX) immobilized to AH-Sepharose 4B, but addition of SAM to the irrigant buffer led to complete retardation of both enzymes on this affinity system. An analogous phenomenon was observed for the caffeic acid O-methyltransferase, with a ferulic acid ligand coupled to the same insoluble support. SAH was as effective as SAM in promoting binding of the furanocoumarin O-methyltransferases to CPAX and caffeic acid 3-O-methyltransferase to immobilized ferulic acid, respectively. The strong and specific adsorption of these enzymes was abolished by exclusion of SAM or SAH from the irrigant buffer. It is concluded that the enzymes bind first to SAM or SAH, and that this binding process in turn induces the binding site for their specific phenolic substrates or their analogs. Based on these findings, a compulsory–ordered kinetic mechanism for the action of these O-methyltransferases is postulated.


1997 ◽  
Vol 41 (5) ◽  
pp. 982-986 ◽  
Author(s):  
T P Kanyok ◽  
A D Killian ◽  
K A Rodvold ◽  
L H Danziger

Aminosidine is an older, broad-spectrum aminoglycoside antibiotic that has been shown to be effective in in vitro and animal models against multiple-drug-resistant tuberculosis and the Mycobacterium avium complex. The objective of this randomized, parallel trial was to characterize the single-dose pharmacokinetics of aminosidine sulfate in healthy subjects (eight males, eight females). Sixteen adults (mean [+/- standard deviation] age, 27.6 +/- 5.6 years) were randomly allocated to receive a single, intramuscular aminosidine sulfate injection at a dose of 12 or 15 mg/kg of body weight. Serial plasma and urine samples were collected over a 24-h period and used to determine aminosidine concentrations by high-performance liquid chromatographic assay. A one-compartment model with first-order input, first-order output, and a lag time (Tlag) and with a weighting factor of 1/y2 best described the data. Compartmental and noncompartmental pharmacokinetic parameters were estimated with the microcomputer program WinNonlin. One subject was not included (15-mg/kg group) because of the lack of sampling time data. On average, subjects attained peak concentrations of 22.4 +/- 3.2 microg/ml at 1.34 +/- 0.45 h. All subjects had plasma aminosidine concentrations below 2 microg/ml at 12 h, and all but two subjects (one in each dosing group) had undetectable plasma aminosidine concentrations at 24 h. The dose-adjusted area under the concentration-time curve from 0 h to infinity of aminosidine was identical for the 12- and 15-mg/kg groups (9.29 +/- 1.5 versus 9.29 +/- 2.2 microg x h/ml per mg/kg; P = 0.998). Similarly, no significant differences (P > 0.05) were observed between dosing groups for peak aminosidine concentration in plasma, time to peak aminosidine concentration in plasma, Tlag, apparent clearance, renal clearance, elimination rate constant, and elimination half-life. A significant difference was observed for the volume of distribution (0.35 versus 0.41 liters/kg; P = 0.037) between the 12 and 15 mg/kg dosing groups. Now that comparable pharmacokinetic profiles between dosing groups have been demonstrated, therapeutic equivalency testing via in vitro pharmacokinetic and pharmacodynamic modelling and randomized clinical trials in humans should be conducted.


2014 ◽  
Vol 48 (spe) ◽  
pp. 137-144
Author(s):  
Renata Laszlo Torres ◽  
Suely Itsuko Ciosak

Objective To describe the profile of Hospitalizations by Amulatory Care Sensitive Conditions (HACSC), in the Municipality of Cotia, from 2008 to 2012. Method ecological, exploratory, longitudinal study with a quantitative approach. Data on HACSC, by age group and sex, were obtained from the Department of the Unified Health System. For data analysis descriptive statistics were used. Results During the period, there were 46,676 admissions, excluding deliveries, 7,753 (16.61%) by HACSC. The main causes were cerebrovascular diseases, 16.96%, heart failure, 15.50%, hypertension, 10.80% and infection of the kidney and urinary tract, 10.51%. Regarding gender, HACSC occurred predominantly in males. There was a greater number of HACSC at extreme age ranges, especially in the elderly. Conclusion Chronic diseases predominate among the leading causes of HACSC and there was no significant difference between sex.






Sign in / Sign up

Export Citation Format

Share Document