scholarly journals Changes in Species Abundances with Short-Term and Long-Term Nitrogen Addition are Mediated by Stoichiometric Homeostasis

Author(s):  
Tian Yang ◽  
Min Long ◽  
Melinda D. Smith ◽  
Qian Gu ◽  
Yadong Yang ◽  
...  

Abstract Aims Increasing nitrogen (N) deposition altered plant communities globally, however the changes in species abundances with short-term vs. long-term N enrichment remains unclear. Stoichiometric homeostasis (H) is a key trait predictive of plant species dominance and species responses to short-term global changes. It is unknown whether N enrichment can alter H over time, thereby affecting species responses to long-term N addition. Methods Here we address these two knowledge gaps with three representative species in a long-term N addition experiment and a sand culture experiment. Results The abundance of Leymus chinensis decreased with short-term N addition, and increased with long-term N addition, while Chenopodium glaucum showed opposite pattern. Cleistogenes squarrosa was only favored by 1-year N addition, and depressed by two and more years of N addition. The H values of L. chinensis and C. glaucum decreased significantly with long-term N addition however did not change for C. squarrosa. Conclusion The decrease of H suggested the nutrients use strategy became more progressive, which mediated the responses of species abundances to short- and long-term N addition. We anticipate our research to be a starting point for explaining ecosystems function and process in response to global change from the perspective of species adaptability mediated by H.

2013 ◽  
Vol 368 (1627) ◽  
pp. 20130186 ◽  
Author(s):  
Jasmin A. Godbold ◽  
Martin Solan

Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete ( Alitta virens ) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3610
Author(s):  
Dawid Buła ◽  
Dariusz Grabowski ◽  
Andrzej Lange ◽  
Marcin Maciążek ◽  
Marian Pasko

Network working conditions are influenced noticeably by the connection of renewable energy sources to distribution networks. This becomes more and more important due to the increase in renewable energy source penetration over the last few years. This in turn can lead to a mass effect. As a result, the classical open network model with simple unidirectional direction of energy flow has been replaced with an active model that includes many local energy sources. This paper deals with the analysis of long- and short-term changes in power and energy generated by three types of renewable energy sources with similar rated power and which operate in the same region (i.e., located no more than tens of kilometers away). The obtained results can be a starting point for a broader evaluation of the influence of renewable energy sources on power quality in power systems, which can be both positive (supply reliability) and negative (voltage fluctuations and higher harmonics in current and voltage waveforms). It is important not only to correctly place but also to assure the diversity of such sources as it has been confirmed by the source variability coefficient. The long-term analysis allows us also to estimate the annual repeatability of energy production and, furthermore, the profitability of investment in renewable sources in a given region.


2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Darian N Smercina ◽  
Sarah E Evans ◽  
Maren L Friesen ◽  
Lisa K Tiemann

ABSTRACT Cellulosic bioenergy crops, like switchgrass (Panicum virgatum), have potential for growth on lands unsuitable for food production coupled with potential for climate mitigation. Sustainability of these systems lies in identifying conditions that promote high biomass yields on marginal lands under low-input agricultural practices. Associative nitrogen fixation (ANF) is a potentially important nitrogen (N) source for these crops, yet ANF contributions to plant N, especially under fertilizer N addition are unclear. In this study, we assess structure (nifH) and function (ANF) of switchgrass root-associated diazotrophic communities to long-term and short-term N additions using soil from three marginal land sites. ANF rates were variable and often unexpectedly high, sometimes 10× greater than reported in the literature, and did not respond in repeatable ways to long-term or short-term N. We found few impacts of N addition on root-associated diazotrophic community structure or membership. Instead, we found a very consistent root-associated diazotrophic community even though switchgrass seeds were germinated in soil from field sites with distinct diazotrophic communities. Ultimately, this work demonstrates that root-associated diazotrophic communities have the potential to contribute to switchgrass N demands, independent of N addition, and this may be driven by selection of the diazotrophic community by switchgrass roots.


2021 ◽  
Vol 199 (1) ◽  
pp. 111-127
Author(s):  
Wojciech Więcek

The article aims to indicate scientifically justified solutions for the functioning of the command post of the Land Component and the circulation of information at that post. It explains the specificity of commanding the Land Component, which is reflected in the existence of three parallel types of planning: current, short-term, and long-term Based on the available subject literature, many conclusions about the essence of commanding the Land Component are presented. In the author’s opinion, they may constitute a starting point for further research on the issues of commanding the Land Component in the future prospective operational environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinhong He ◽  
Shuo Jiao ◽  
Xiangping Tan ◽  
Hui Wei ◽  
Xiaomin Ma ◽  
...  

Soil fungi play critical roles in ecosystem processes and are sensitive to global changes. Elevated atmospheric nitrogen (N) deposition has been well documented to impact on fungal diversity and community composition, but how the fungal community assembly responds to the duration effects of experimental N addition remains poorly understood. Here, we aimed to investigate the soil fungal community variations and assembly processes under short- (2 years) versus long-term (13 years) exogenous N addition (∼100 kg N ha–1 yr–1) in a N-rich tropical forest of China. We observed that short-term N addition significantly increased fungal taxonomic and phylogenetic α-diversity and shifted fungal community composition with significant increases in the relative abundance of Ascomycota and decreases in that of Basidiomycota. Short-term N addition also significantly increased the relative abundance of saprotrophic fungi and decreased that of ectomycorrhizal fungi. However, unremarkable effects on these indices were found under long-term N addition. The variations of fungal α-diversity, community composition, and the relative abundance of major phyla, genera, and functional guilds were mainly correlated with soil pH and NO3––N concentration, and these correlations were much stronger under short-term than long-term N addition. The results of null, neutral community models and the normalized stochasticity ratio (NST) index consistently revealed that stochastic processes played predominant roles in the assembly of soil fungal community in the tropical forest, and the relative contribution of stochastic processes was significantly increased by short-term N addition. These findings highlighted that the responses of fungal community to N addition were duration-dependent, i.e., fungal community structure and assembly would be sensitive to short-term N addition but become adaptive to long-term N enrichment.


2017 ◽  
Vol 4 (3) ◽  
pp. 14
Author(s):  
Jin Yong Yang ◽  
Sang-Heon Lee ◽  
In-Sung Yeo

This study analyzed volatility comovement and contagion in the stock markets of four countries (China, Japan, Korea, and Taiwan) in East Asia, which are closely connected with each other geographically and economically in terms of short-term and long-term perspectives. The volatility of stock returns has complex properties of not only volatility clustering, but also long memory, regime change, and substantial outliers. This study reviewed the volatility comovement and contagion in a stock market from long-term and short-term perspectives with the Bivariate Markov Switching Multifractal (BMSM) volatility model that is known for explaining such characteristics well, in spite of using small number of parameters. The empirical analysis results are as follows: China has no significant correlation with the other three countries. Therefore, China stock market is regarded as isolated or segmented market. The influence of the financial crisis on East Asian countries varies depending on the country. Regardless of the starting point of the crisis, Korea and Taiwan are shown to be vulnerable to external impact, compared to China and Japan. From the perspective of the nature of crisis, financial crisis that occurred in 1997 in East Asia and South Europe in 2011 were identified as local shocks as they had an impact on only a few countries, while the global crisis in 2008 was identified as global shock because it caused significant short-term and/or mid and long-term volatility of all countries.


2021 ◽  
Author(s):  
Tian Yang ◽  
Min Long ◽  
Melinda D. Smith ◽  
Qian Gu ◽  
Yadong Yang ◽  
...  

2019 ◽  
Author(s):  
Benjamin Compans ◽  
Magalie Martineau ◽  
Remco V. Klaassen ◽  
Thomas M. Bartol ◽  
Corey Butler ◽  
...  

Long-Term Potentiation (LTP) and Long-Term Depression (LTD) of excitatory synaptic transmission are considered as cellular basis of learning and memory. These two forms of synaptic plasticity have been mainly attributed to global changes in the number of synaptic AMPA-type glutamate receptor (AMPAR) through a regulation of the diffusion/trapping balance at the PSD, exocytosis and endocytosis. While the precise molecular mechanisms at the base of LTP have been intensively investigated, the ones involved in LTD remains elusive. Here we combined super-resolution imaging technique, electrophysiology and modeling to describe the various modifications of AMPAR nanoscale organization and their effect on synaptic transmission in response to two different LTD protocols, based on the activation of either NMDA receptors or P2X receptors. While both type of LTD are associated with a decrease in synaptic AMPAR clustering, only NMDAR-dependent LTD is associated with a reorganization of PSD-95 at the nanoscale. This change increases the pool of diffusive AMPAR improving synaptic short-term facilitation through a post-synaptic mechanism. These results demonstrate that specific dynamic reorganization of synapses at the nanoscale during specific LTD paradigm allows to improve the responsiveness of depressed synapses.


1986 ◽  
Vol 13 (4) ◽  
pp. 533 ◽  
Author(s):  
N Aswathappa ◽  
EP Bachelard

Distribution of Na+, Cl-, K+, Ca2+ and Mg2+ was studied in individual organs of two highly tolerant and one moderately tolerant species of Casuarina. The highly tolerant species (C. equisetifolia and C. glauca) accumulated little Na+ and Cl- in their shoots and the concentrations of Na+ and Cl- decreased from old to young growing needles. The concentrations of Na+ and Cl- were much higher in shoots of the moderately tolerant species (C. cunninghamiana) and a concentration gradient between old and young needles was not observed. The same pattern of distribution of Cl- in C. equisetifolia was found in seedlings exposed to both short term (13 days at 100 mol m-3 NaCl in solution culture), and long term (6 months at 250 mol m-3 NaCl in sand culture) salinisation. The three species showed little difference in their root ion concentrations. A time sequence experiment of Cl- uptake indicated that the better exclusion of Cl- from the shoots of C. equisetifolia than C. cunninghamiana was due to a lower rate of Cl- uptake and lower net transport into the shoot rather than to its retention in the roots, or reabsorption at the proximal root or hypocotyl.


2013 ◽  
Vol 31 (10) ◽  
pp. 1653-1671 ◽  
Author(s):  
M. Pietrella

Abstract. Twelve empirical local models have been developed for the long-term prediction of the ionospheric characteristic M3000F2, and then used as starting point for the development of a short-term forecasting empirical regional model of M3000F2 under not quiet geomagnetic conditions. Under the assumption that the monthly median measurements of M3000F2 are linearly correlated to the solar activity, a set of regression coefficients were calculated over 12 months and 24 h for each of 12 ionospheric observatories located in the European area, and then used for the long-term prediction of M3000F2 at each station under consideration. Based on the 12 long-term prediction empirical local models of M3000F2, an empirical regional model for the prediction of the monthly median field of M3000F2 over Europe (indicated as RM_M3000F2) was developed. Thanks to the IFELM_foF2 models, which are able to provide short-term forecasts of the critical frequency of the F2 layer (foF2STF) up to three hours in advance, it was possible to considerer the Brudley–Dudeney algorithm as a function of foF2STF to correct RM_M3000F2 and thus obtain an empirical regional model for the short-term forecasting of M3000F2 (indicated as RM_M3000F2_BD) up to three hours in advance under not quiet geomagnetic conditions. From the long-term predictions of M3000F2 provided by the IRI model, an empirical regional model for the forecast of the monthly median field of M3000F2 over Europe (indicated as IRI_RM_M3000F2) was derived. IRI_RM_M3000F2 predictions were modified with the Bradley–Dudeney correction factor, and another empirical regional model for the short-term forecasting of M3000F2 (indicated as IRI_RM_M3000F2_BD) up to three hours ahead under not quiet geomagnetic conditions was obtained. The main results achieved comparing the performance of RM_M3000F2, RM_M3000F2_BD, IRI_RM_M3000F2, and IRI_RM_M3000F2_BD are (1) in the case of moderate geomagnetic activity, the Bradley–Dudeney correction factor does not improve significantly the predictions; (2) under disturbed geomagnetic conditions, the Bradley–Dudeney formula improves the predictions of RM_M3000F2 in the entire European area; (3) in the case of very disturbed geomagnetic conditions, the Bradley–Dudeney algorithm is very effective in improving the performance of IRI_RM_M3000F2; (4) under moderate geomagnetic conditions, the long-term prediction maps of M3000F2 generated by RM_M3000F2 can be considered as short-term forecasting maps providing very satisfactory results because quiet geomagnetic conditions are not so diverse from moderate geomagnetic conditions; (5) the forecasting maps originated by RM_M3000F2, RM_M3000F2_BD, and IRI_RM_M3000F2_BD show some regions where the forecasts are not satisfactory, but also wide sectors where the M3000F2 forecasts quite faithfully match the M3000F2 observations, and therefore RM_M3000F2, RM_M3000F2_BD, and IRI_RM_M3000F2_BD could be exploited to produce short-term forecasting maps of M3000F2 over Europe up to 3 h in advance.


Sign in / Sign up

Export Citation Format

Share Document