scholarly journals Design and Investigation of Gate Stacked Vertical TFET with N+ SiGe Pocket Doped Heterojunction for Performance Enhancement

Author(s):  
Shilpi Gupta ◽  
Subodh Wariya ◽  
shailendra singh

Abstract In this paper, a novel delta-doped N + Silicon-Germanium Gate Stacked Triple Metal Gate Vertical TFET (Delta doped N + GS TMG VTFET) is proposed and investigated using the Silvaco TCAD simulation tool. Four different combinations were presented and compared with and without the gate stacking method and Si0.2Ge0.8 N + pocket delta-doped layer to render the optimized results. Among all, Delta doped N + GS TMG VTFET structure comes out with a very steep sub-threshold slope (9.75 mV/dec), 40 % lower than the first configuration of TMG VTFET. The inclusion of the N + delta-doped layer between the source and channel and gate will enhance the ON-state drive current performance by reducing the OFF-state leakage current. This happens due to the lower bandgap of the N + delta-doped layer cause narrow BTBT, which results in a high drive current. The Triple metal gate is designed to mitigate the ambipolar conduction by modulating the optimized wok function at 4.15, 4.3, and 4.15 eV. The distribution of the source channel in the vertical structure will enhance the device's scalability due to the electron tunneling moves in the vertical electric field direction. The optimally constructed structure demonstrates improved performance, such as a high ION/IOFF current ratio (~ 1013) and sub-threshold voltage (0.33 V). The results obtained from the proposed device make it suitable for the ultra-low-power device application.

2007 ◽  
Vol 995 ◽  
Author(s):  
Sagnik Dey ◽  
Se-Hoon Lee ◽  
Sachin V. Joshi ◽  
Prashant Majhi ◽  
Sanjay K. Banerjee

AbstractA MOSFET formed by a Si cantilever channel suspended between source/drain “anchors” wrapped all-around by high-κ dielectric and metal gate is demonstrated. The device shows excellent subthreshold characteristics and low leakage currents due to the fully depleted body and the gate-all-around architecture implemented with a high-κ dielectric and metal gate. At the same time this also allows a high drive current due to mobility enhancements arising from volume inversion of the cantilever channel such that a large ION/IOFF is achieved.


2007 ◽  
Vol 17 (01) ◽  
pp. 115-120
Author(s):  
N. Sustersic ◽  
S. Kim ◽  
P.-C. Lv ◽  
M. Coppinger ◽  
T. Troeger ◽  
...  

In this paper, we report on current pumped THz emitting devices based on intersubband transitions in SiGe quantum wells. The spectral lines occurred in a range from 5 to 12 THz depending on the quantum well width, Ge concentration in the well, and device temperature. A time-averaged power of 15 nW was extracted from a 16 period SiGe/Si superlattice with quantum wells 22 Å thick, at a device temperature of 30 K and a drive current of 550 mA. A net quantum efficiency of approximately 3 × 10-4 was calculated from the power and drive current, 30 times higher than reported for comparable quantum cascades utilizing heavy-hole to heavy-hole transitions and, taking into account the number of quantum well periods, approximately four times larger than for electroluminescence reported previously from a device utilizing light-hole to heavy-hole transitions.


2004 ◽  
Vol 811 ◽  
Author(s):  
Kazuaki Nakajima ◽  
Hiroshi Nakazawa ◽  
Katsuyuki Sekine ◽  
Kouji Matsuo ◽  
Tomohiro Saito ◽  
...  

ABSTRACTIn this paper, we first propose an improved CVD-WSix metal gate suitable for use with nMOSFETs. Work function of CVD-WSi3.9 gate estimated from C-V measurements was 4.3eV. The nMOSFET using CVD-WSi3.9 gate electrode showed that Vth variation of L/W=1 μm/10μm nMOSFETs can be suppressed to be lower than 8mV in 22chip. In CVD-WSi3.9 gate MOSFETs with gate length of 50nm, a drive current of 636μA/μm was achieved for off-state leakage current of 35nA/μm at 1.0V of power supply voltage. By using CVD-WSi3.9 gate electrode, highly reliable metal gate nMOSFETs can be realized.


Sign in / Sign up

Export Citation Format

Share Document