scholarly journals Transcriptomic and metabolomic profiling reveals  the effect of LED light quality on morphological traits, and phenylpropanoid-derived compounds  accumulation in Sarcandra glabra seedlings

2020 ◽  
Author(s):  
Dejin Xie ◽  
Lingyan Chen ◽  
Chengcheng Zhou ◽  
Muhammad Waqqas Khan Tarin ◽  
Deming Yang ◽  
...  

Abstract Background: Sarcandra glabra is an evergreen and traditional Chinese herb with anti-oxidant, anti-bacterial, anti-inflammatory, and anti-tumor effects. Recently, artificial light-emitting diodes (LEDs) have been widely used as energy for plants in greenhouse. However, little is known regarding the effects of the different LED lights on plant growth and the regulatory mechanism of phenylpropanoid-derived compounds accumulation patterns in S. glabra. Results: Compared to white LED light (WL), the red LED light (RL) significantly increased the plant height and decreased the stem diameter and leaf area, whereas blue LED light (BL) significantly suppressed the height and leaf area of S. glabra. According to the results of transcriptomic profiling, 861, 378, 47, 10,033, 7917, and 6379 differentially expressed genes (DEGs) were identified among the groups of leaf tissue under BL (BY) vs leaf tissue under RL (RY), BY vs leaf tissue under WL (WY), RY vs WY, root tissue under WL (WG) vs WY, stem tissue under WL (WJ) vs WG, and WJ vs WY, respectively. We identified 46 unigenes encoding for almost all known enzymes involved in phenylpropanoid biosynthesis, e.g., phenylalanine ammonia lyase (PAL), 4-coumaroyl CoA ligase (4CL), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and flavonol synthase (FLS). We found 53 unigenes encoding R2R3-MYB proteins and bHLH proteins, respectively, where several were related to flavonoids biosynthesis. Based on metabolomic profiling, a total of 454 metabolites were identified, of which 44, 87, and 296 compounds were differentially produced in WY vs RY, WY vs BY, and WY vs WG, respectively. In BY, the production of esculetin, caffeic acid, isofraxidin, and fraxidin were significantly reduced, while the yields of quercitrin and kaempferol were significantly up-regulated. In RY, the contents of cryptochlorogenic acid, cinnamic acid, and kaempferol were significantly decreased. In addition, the production of metabolites (e.g., chlorogenic acid, cryptochlorogenic acid, and scopolin) were significantly reduced, whereas the yields of metabolites (e.g., esculetin, fraxetin, isofraxidin, and fraxidin) were significantly promoted in WG. Conclusion: These results provide further insight into the regulatory mechanism of phenylpropanoid-derived compounds accumulation patterns in S. glabra under different light conditions, enabling the development of optimum breeding conditions for this plant.

2020 ◽  
Author(s):  
Dejin Xie ◽  
Lingyan Chen ◽  
Chengcheng Zhou ◽  
Muhammad Waqqas Khan Tarin ◽  
Deming Yang ◽  
...  

Abstract Background: Sarcandra glabra is an evergreen and traditional Chinese herb with anti-oxidant, anti-bacterial, anti-inflammatory, and anti-tumor effects. Light is one of the most influential factor affecting the growth and quality of herbs. In recent times, the introduction of Light Emission Diode (LED) technology has been widely used for plants in greenhouse. However, the impact of such lights on plant growth and the regulatory mechanism of phenylpropanoid-derived compounds in S. glabra remain unclear. Results: The red LED light (RL) substantially increased the plant height and decreased the stem diameter and leaf area relative to the white LED light (WL), while the blue LED light (BL) significantly reduced the height and leaf area of S. glabra. According to transcriptomic profiling, 861, 378, 47, 10,033, 7917, and 6379 differentially expressed genes (DEGs) were identified among the groups of leaf tissue under BL (BY) vs. leaf tissue under RL (RY), BY vs. leaf tissue under WL (WY), RY vs. WY, root tissue under WL (WG) vs. WY, stem tissue under WL (WJ) vs. WG, and WJ vs. WY, respectively. We identified 46 genes encoding for almost all known enzymes involved in phenylpropanoid biosynthesis, e.g., phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), and flavonol synthase (FLS). We found 53 genes encoding R2R3-MYB proteins and bHLH proteins, respectively, where several were related to flavonoids biosynthesis. A total of 454 metabolites were identified based on metabolomic profiling, of which 44, 87, and 296 compounds were differentially produced in WY vs. RY, WY vs. BY, and WY vs. WG. In BY there was a substantial reduction in the production of esculetin, caffeic acid, isofraxidin, and fraxidin, while the yields of quercitrin and kaempferol were significantly up-regulated. In RY, the contents of cryptochlorogenic acid, cinnamic acid, and kaempferol decreased significantly. Besides, in WG, the production of metabolites (e.g. chlorogenic acid, cryptochlorogenic acid, and scopolin) declined, while their yields increased significantly (e.g. esculetin, fraxetin, isofraxidin, and fraxidin).Conclusion: These results provide further insight into the regulatory mechanism of accumulation patterns of phenylpropanoid-derived compounds in S. glabra under various light conditions, allowing optimum breeding conditions to be developed for this plant.


2020 ◽  
Author(s):  
Dejin Xie ◽  
Lingyan Chen ◽  
Chengcheng Zhou ◽  
Muhammad Waqqas Khan Tarin ◽  
Deming Yang ◽  
...  

Abstract Background: Sarcandra glabra is an evergreen and traditional Chinese herb with anti-oxidant, anti-bacterial, anti-inflammatory, and anti-tumor effects. Light is one of the most influential factor affecting the growth and quality of herbs. In recent times, the introduction of Light Emission Diode (LED) technology has been widely used for plants in greenhouse. However, the impact of such lights on plant growth and the regulatory mechanism of phenylpropanoid-derived compounds in S. glabra remain unclear. Results: The red LED light (RL) substantially increased the plant height and decreased the stem diameter and leaf area relative to the white LED light (WL), while the blue LED light (BL) significantly reduced the height and leaf area of S. glabra. According to transcriptomic profiling, 861, 378, 47, 10,033, 7917, and 6379 differentially expressed genes (DEGs) were identified among the groups of leaf tissue under BL (BY) vs. leaf tissue under RL (RY), BY vs. leaf tissue under WL (WY), RY vs. WY, root tissue under WL (WG) vs. WY, stem tissue under WL (WJ) vs. WG, and WJ vs. WY, respectively. We identified 46 genes encoding for almost all known enzymes involved in phenylpropanoid biosynthesis, e.g., phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), and flavonol synthase (FLS). We found 53 genes encoding R2R3-MYB proteins and bHLH proteins, respectively, where several were related to flavonoids biosynthesis. A total of 454 metabolites were identified based on metabolomic profiling, of which 44, 87, and 296 compounds were differentially produced in WY vs. RY, WY vs. BY, and WY vs. WG. In BY there was a substantial reduction in the production of esculetin, caffeic acid, isofraxidin, and fraxidin, while the yields of quercitrin and kaempferol were significantly up-regulated. In RY, the contents of cryptochlorogenic acid, cinnamic acid, and kaempferol decreased significantly. Besides, in WG, the production of metabolites (e.g. chlorogenic acid, cryptochlorogenic acid, and scopolin) declined, while their yields increased significantly (e.g. esculetin, fraxetin, isofraxidin, and fraxidin).Conclusion: These results provide further insight into the regulatory mechanism of accumulation patterns of phenylpropanoid-derived compounds in S. glabra under various light conditions, allowing optimum breeding conditions to be developed for this plant.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dejin Xie ◽  
Lingyan Chen ◽  
Chengcheng Zhou ◽  
Muhammad Waqqas Khan Tarin ◽  
Deming Yang ◽  
...  

Abstract Background Sarcandra glabra is an evergreen and traditional Chinese herb with anti-oxidant, anti-bacterial, anti-inflammatory, and anti-tumor effects. Light is one of the most influential factor affecting the growth and quality of herbs. In recent times, the introduction of Light Emission Diode (LED) technology has been widely used for plants in greenhouse. However, the impact of such lights on plant growth and the regulatory mechanism of phenylpropanoid-derived compounds in S. glabra remain unclear. Results The red LED light (RL) substantially increased the plant height and decreased the stem diameter and leaf area relative to the white LED light (WL), while the blue LED light (BL) significantly reduced the height and leaf area of S. glabra. According to transcriptomic profiling, 861, 378, 47, 10,033, 7917, and 6379 differentially expressed genes (DEGs) were identified among the groups of leaf tissue under BL (BY) vs. leaf tissue under RL (RY), BY vs. leaf tissue under WL (WY), RY vs. WY, root tissue under WL (WG) vs. WY, stem tissue under WL (WJ) vs. WG, and WJ vs. WY, respectively. We identified 46 genes encoding for almost all known enzymes involved in phenylpropanoid biosynthesis, e.g., phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), and flavonol synthase (FLS). We found 53 genes encoding R2R3-MYB proteins and bHLH proteins, respectively, where several were related to flavonoids biosynthesis. A total of 454 metabolites were identified based on metabolomic profiling, of which 44, 87, and 296 compounds were differentially produced in WY vs. RY, WY vs. BY, and WY vs. WG. In BY there was a substantial reduction in the production of esculetin, caffeic acid, isofraxidin, and fraxidin, while the yields of quercitrin and kaempferol were significantly up-regulated. In RY, the contents of cryptochlorogenic acid, cinnamic acid, and kaempferol decreased significantly. Besides, in WG, the production of metabolites (e.g. chlorogenic acid, cryptochlorogenic acid, and scopolin) declined, while their yields increased significantly (e.g. esculetin, fraxetin, isofraxidin, and fraxidin). Conclusion These results provide further insight into the regulatory mechanism of accumulation patterns of phenylpropanoid-derived compounds in S. glabra under various light conditions, allowing optimum breeding conditions to be developed for this plant.


2020 ◽  
Author(s):  
Dejin Xie ◽  
Lingyan Chen ◽  
Chengcheng Zhou ◽  
Muhammad Waqqas Khan Tarin ◽  
Deming Yang ◽  
...  

Abstract Background Sarcandra glabra is an evergreen and traditional Chinese herb, having medicinal significance as anti-oxidant, anti-bacterial, anti-inflammatory, and anti-tumor. Recently, China has initiated to establish cultivation of this plant in greenhouse under artificial light-emitting diodes (LED). However, little is known regarding the effects of the different LED lights on plant growth, accumulation pattern of secondary metabolites, and the molecular mechanism of Sarcandra glabra. Results Compared to white light (WL), the red light (RL) increased the height and decreased the stem diameter and leaf area, while blue light (BL) suppressed the height and leaf area. According to our transcriptome profiling, some differentially expressed genes (DEGs) were enriched in the phenylpropanoid biosynthesis. We identified 46 unigenes encoding for almost all known enzymes involved in phenylpropanoid biosynthesis, while the expression level of RNA-seq and qPCR were largely consistent. Meanwhile, we found 53 unigenes encoding R2R3-MYB proteins and 53 unigenes encoding bHLH proteins that several of them were related to flavonoids biosynthesis. Based on metabolomic profiling, a total of 454 metabolites were detected and the distribution of chemicals varied significantly. While flavonoids, phenolic acids, and tannins were mainly located in leaves; Organic acids, lignans and coumarins, and terpenoids were much more abundant in WG (root tissue under WL). Meanwhile, the yields of most flavonoids from BY (leaf tissue under BL) and the synthesis of primarily targeted compounds was lower than in WY (leaf tissue under WL) and RY (leaf tissue under RL). Instead, the leaves grown under RL exhibited a greater production of bioactive phytochemicals such as esculetin, fraxetin, esculin, and scopoletin. Conclusion These results provide further insight into the molecular mechanism of metabolites accumulation patterns in S. glabra under different light conditions, enabling the development of optimum breeding conditions for this plant.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1698
Author(s):  
Yiting Zhang ◽  
Hao Dong ◽  
Shiwei Song ◽  
Wei Su ◽  
Houcheng Liu

In order to inhibit spindling growth and improve quality of cucumber seedlings under low irradiance, effects of supplemental light-emitting diodes (LED) light (SL) on morphological and physiological characteristics of cucumber seedlings at different growth stages under extremely low irradiance (ELI) were investigated. Supplementary monochromatic, dichromatic and trichromatic LED light on cucumber seedlings were conducted in experiment one, and supplements of combination ratios and intensity of blue and red LED light (RB) were conducted in experiment two. The morphological and physiological parameters of cucumber seedlings were promoted effectively by supplemental monochromatic red light or dichromatic containing red light (RB and RG) under ELI as early as one-leaf seedling stage, as demonstrated by suppressed length of hypocotyl and first internode, increased stem diameter and biomass, higher net photosynthetic rate (Pn) and soluble sugar content. Monochromatic or additional green light was not beneficial to cucumber seedlings under the ELI. The length of shoot and hypocotyl decreased, while stem diameter and leaf area increased as early as one-leaf seedling stage by RB SL. Root activities, root–shoot ratio, activities of catalase (CAT) and peroxidase (POD), as well as palisade–spongy ratio in the leaf of cucumber seedlings were promoted effectively by increasing blue light proportion (1R1B/1R2B). Increasing light intensity (50/75) enhanced soluble sugar accumulation in leaves. There were synergistic effects of RB ratio and light intensity on increasing stem diameter, leaf area, seedling index and decreasing hypocotyl cell area of the vertical section. In conclusion, 1R2B-75 may be the optimal SL to inhibit spindling growth of cucumber seedlings under ELI condition.


2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Sarayut Pittarate ◽  
Malee Thungrabeab ◽  
Supamit Mekchay ◽  
Patcharin Krutmuang

Ctenocephalides felis is an ectoparasitic flea species commonly found on dogs and cats. The current study verified the in vitro virulence of conidia of the entomopathogenic fungus Beauveria bassiana produced under different color LED light (red, blue, purple, green, yellow, and white) to adults of C. felis. The fungal isolates were cultivated on malt extract agar (MEA). Bioassay treatments used aerial conidia in test tubes. Adult fleas were obtained from a house cat in Chiang Mai province, Thailand. The experiments were composed of one control and eleven treatment groups. All of the treatments with B. bassiana conidia caused adult mortality after an exposure of 12 h. Among the conditions used in this study, B. bassiana cultured under red LED and fluorescent light were the most effective in causing mortality (100 %) in adult fleas after 36 h. The experimental results indicate that these aerial conidia of B. bassiana have promising potential for use in control of C. felis adult stages.


2017 ◽  
Vol 8 ◽  
Author(s):  
Chun-Xia Li ◽  
Zhi-Gang Xu ◽  
Rui-Qi Dong ◽  
Sheng-Xin Chang ◽  
Lian-Zhen Wang ◽  
...  
Keyword(s):  
Rna Seq ◽  

Author(s):  
Jaime Catalán ◽  
Marion Papas ◽  
Lina Trujillo-Rojas ◽  
Olga Blanco-Prieto ◽  
Sebastián Bonilla-Correal ◽  
...  

This work aimed to investigate how stimulation of donkey sperm with red LED light affects mitochondrial function. For this purpose, freshly diluted donkey semen was stimulated with red light for 1, 5, and 10 min, in the presence or absence of oligomycin A (Omy A), a specific inhibitor of mitochondrial ATP synthase, or FCCP, a specific disruptor of mitochondrial electron chain. The results obtained in the present study indicated that the effects of red LED light on fresh donkey sperm function are related to changes in mitochondria function. In effect, irradiation of donkey sperm resulted in an increase in mitochondrial membrane potential (MMP), the activity of cytochrome C oxidase and the rate of oxygen consumption. In addition, in the absence of oligomycin A and FCCP, light-stimulation augmented the average path velocity (VAP) and modified the structure of motile sperm subpopulations, increasing the fastest and most linear subpopulation. In contrast, the presence of either Omy A or FCCP abolished the aforementioned effects. Interestingly, our results also showed that the effects of red light depend on the exposure time applied, as indicated by the observed differences between irradiation protocols. In conclusion, our results suggest that exposing fresh donkey sperm to red light modulates the function of their mitochondria through affecting the activity of the electron chain. However, the extent of this effect depends on the irradiation pattern and does not exclude the existence of other mechanisms, such as those related to thermotaxis.


Sign in / Sign up

Export Citation Format

Share Document