scholarly journals Enhancing the ecological value of tropical agriculture through set-asides

Author(s):  
Jake Bicknell ◽  
Jesse O'Hanley ◽  
Paul Armsworth ◽  
Eleanor Slade ◽  
Nicolas Deere ◽  
...  

Abstract Agricultural expansion across the tropics is the primary driver of biodiversity declines and ecosystem service degradation. However, efforts to mitigate these negative impacts may reduce commodity production. We quantify trade-offs between oil palm cultivation and ecological outcomes (biodiversity, above-ground carbon storage and dung nutrient cycling) across different potential set-aside (uncultivated areas in agricultural landscapes) strategies. We show that all set-aside configurations yield substantial gains in ecological outcomes. The best strategy involves spatially targeted riparian reserves, such as those used in oil palm certification schemes, where species occurrence can be doubled without reducing overall cultivation area. Adopting this strategy throughout the 8 million hectares of plantations in Borneo would lead to extensive improvements in ecological outcomes without losses to production area, and consequently, enhancing agricultural sustainability.

2015 ◽  
Vol 65 (3-4) ◽  
pp. 321-335 ◽  
Author(s):  
Fabricio S. Correa ◽  
Leandro Juen ◽  
Lenise C. Rodrigues ◽  
Heriberto F. Silva-Filho ◽  
Maria C. Santos-Costa

The extent of land use for oil palm plantations has grown considerably in the tropics due to climate, appropriate soil conditions for cultivation and its profitability. However, oil palm plantations may endanger biodiversity through reduction and fragmentation of forest areas. Herein we analyzed the effects on anuran species richness, composition and total abundance in oil palm plantations and surrounding forests in eastern Amazon. We installed seven plots in oil palm plantations and seven plots in surrounding forests, which we surveyed for the presence of anurans through active visual and acoustic surveys during periods of high and low rainfall levels. Anuran assemblages found in forests and oil palm plantations differed in species richness and composition, with a loss of 54% of species in oil palm plantations. No difference was observed in total abundance of anurans between both environments. While conversion of forests to oil palm plantations may result in less negative impacts on anuran diversity than other types of monocultures, such loss is nevertheless high, making the maintenance of relatively greater forested areas around oil palm plantations necessary in order to conserve anuran diversity.


2020 ◽  
Vol 12 (20) ◽  
pp. 8588 ◽  
Author(s):  
Lalisa Duguma ◽  
Esther Kamwilu ◽  
Peter A Minang ◽  
Judith Nzyoka ◽  
Kennedy Muthee

Energy supply systems in the tropics and subtropics are marred with considerable negative impacts on ecosystems, for example, forest loss and habitat destruction. This document examines the role of ecosystems in household energy supply in Africa and explores pathways to ecosystem-based approaches to bioenergy generation by building on the regenerative economy concept. An ecosystem-based approach to bioenergy is an energy supply and utilization mechanism aimed at enhancing sustainable management of the sources of ecosystems with minimal trade-offs on/from other sectors directly linked to energy issues. Our analysis revealed that about 87% of energy supply to the population originated from agroecosystems and is challenged by the severe ecosystem degradation happening due to natural and anthropogenic factors. However, ecosystem restoration and effective use of agricultural residues could provide hope for making energy supply sustainable. Our analysis showed that restoring sparsely vegetated areas and degraded forest and savannahs, promotion of agroforestry in degraded agricultural lands, and use of agricultural residues could generate close to 71 billion gigajoules (GJ) of energy and provide sufficient energy for about 2.5 billion people if implemented in all potential areas identified. Ecosystem-based approaches to bioenergy along with a well-balanced involvement of sectors and industry actors coupled with knowledgeable management of the ecosystem could lead to beneficial outcomes for the society and environment.


Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Antonio J. Mendoza-Fernández ◽  
Fabián Martínez-Hernández ◽  
Esteban Salmerón-Sánchez ◽  
Francisco J. Pérez-García ◽  
Blas Teruel ◽  
...  

Maytenus senegalensis subsp. europaea is a shrub belonging to the Celastraceae family, whose only European populations are distributed discontinuously along the south-eastern coast of the Iberian Peninsula, forming plant communities with great ecological value, unique in Europe. As it is an endangered species that makes up plant communities with great palaeoecological significance, the development of species distribution models is of major interest under different climatic scenarios, past, present and future, based on the fact that the climate could play a relevant role in the distribution of this species, as well as in the conformation of the communities in which it is integrated. Palaeoecological models were generated for the Maximum Interglacial, Last Maximum Glacial and Middle Holocene periods. The results obtained showed that the widest distribution of this species, and the maximum suitability of its habitat, occurred during the Last Glacial Maximum, when the temperatures of the peninsular southeast were not as contrasting as those of the rest of the European continent and were favored by higher rainfall. Under these conditions, large territories could act as shelters during the glacial period, a hypothesis reflected in the model’s results for this period, which exhibit a further expansion of M. europaea’s ecological niche. The future projection of models in around 2070, for four Representative Concentration Pathways according to the fifth report of the Intergovernmental Panel on Climate Change, showed that the most favorable areas for this species would be Campo de Dalías (southern portion of Almería province) as it presents the bioclimatic characteristics of greater adjustment to M. europaea’s ecological niche model. Currently, some of the largest specimens of the species survive in the agricultural landscapes in the southern Spain. These areas are almost totally destroyed and heavily altered by intensive agriculture greenhouses, also causing a severe fragmentation of the habitat, which implies a prospective extinction scenario in the near future.


2019 ◽  
Vol 27 (3) ◽  
pp. 26-28

Purpose The purpose of the study was to determine, first, whether both numeric diversity and racial climate impacted the psychological well-being and workplace experiences of faculty of color (FOC). But the authors also considered whether there was an “additive” effect when both diversity factors existed at the same time. Design/methodology/approach The authors used surveys of academics from various backgrounds in multiple US regions to test the effects of numeric diversity and racial climate on three dependent variables – invisible labor, stress from discrimination and dissatisfaction with co-workers. For the purposes of the study, FOC were defined as black, Latinx and Asian faculty. Findings The results showed significant support for the authors' prediction that there was more stress from discrimination, invisible labor, and co-worker dissatisfaction against FOC in institutions with low numeric diversity and poor racial climate compared with institutions with high numeric diversity and a positive racial climate. They also found that negative impacts were smaller in institutions with both high numeric diversity and a positive racial climate, compared to institutions with high numeric diversity, but a poor racial climate. However, similar results were not found for institutions with low numeric diversity and positive racial climate. Originality/value The authors concluded that the findings showed that “diversity climate may be the primary driver of mitigating psychological disparities between FOC and white faculty”. They said that education officials should take action to construct a positive racial climate, but neither should they ignore numeric representation.


2002 ◽  
Vol 29 (1) ◽  
pp. 39-61 ◽  
Author(s):  
Paul Adam

Saltmarshes are a major, widely distributed, intertidal habitat. They are dynamic systems, responding to changing environmental conditions. For centuries, saltmarshes have been subject to modification or destruction because of human activity. In this review, the range of factors influencing the survival of saltmarshes is discussed. Of critical importance are changes in relative sea level and in tidal range. Relative sea level is affected by changes in absolute sea level, changes in land level and the capacity of saltmarshes to accumulate and retain sediment. Many saltmarshes are starved of sediment because of catchment modification and coastal engineering, or exposed to erosive forces, which may be of natural origin or reflect human interference. The geographical distribution of individual saltmarsh species reflects climate, so that global climatic change will be reflected by changes in distribution and abundance of species, although the rate of change in communities dominated by perennial plants is difficult to predict. Humans have the ability to create impacts on saltmarshes at a range of scales from individual sites to globally. Pressures on the environment created by the continued increase in the human population, particularly in developing tropical countries, and the likely consequences of the enhanced greenhouse effect on both temperature and sea level give rise to particular concerns. Given the concentration of population growth and development in the coastal zone, and the potential sensitivity of saltmarsh to change in sea level, it is timely to review the present state of saltmarshes and to assess the likelihood of changes in the near (25 years) future. By 2025, global sea level rise and warming will have impacts on saltmarshes. However, the most extensive changes are likely to be the direct result of human actions at local or regional scales. Despite increasing recognition of the ecological value of saltmarsh, major projects involving loss of saltmarshes but deemed to be in the public interest will be approved. Pressures are likely to be particularly severe in the tropics, where very little is known about saltmarshes. At the local scale the cumulative impacts of activities, which individually have minor effects, may be considerable. Managers of saltmarshes will be faced with difficult choices including questions as to whether traditional uses should be retained, whether invasive alien species or native species increasing in abundance should be controlled, whether planned retreat is an appropriate response to rising relative sea level or whether measures can be taken to reduce erosion. Decisions will need to take into account social and economic as well as ecological concerns.


2017 ◽  
Vol 30 (7) ◽  
pp. 2523-2534 ◽  
Author(s):  
Lorenzo M. Polvani ◽  
Lei Wang ◽  
Valentina Aquila ◽  
Darryn W. Waugh

The impact of ozone-depleting substances on global lower-stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower-stratospheric temperature trends has proven more challenging. While the tropical lower-stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active chlorine is not abundant in the tropical lower stratosphere. The 1979–97 tropical ozone trends are believed to originate from enhanced upwelling, which, it is often stated, would be driven by increasing concentrations of well-mixed greenhouse gases. This study, using simple arguments based on observational evidence after 1997, combined with model integrations with incrementally added single forcings, argues that trends in ozone-depleting substances, not well-mixed greenhouse gases, have been the primary driver of temperature and ozone trends in the tropical lower stratosphere until 1997, and this has occurred because ozone-depleting substances are key drivers of tropical upwelling and, more generally, of the entire Brewer–Dobson circulation.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160349 ◽  
Author(s):  
Xia Hua

Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data.


Land ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 45 ◽  
Author(s):  
Melanie Feurer ◽  
Andreas Heinimann ◽  
Flurina Schneider ◽  
Christine Jurt ◽  
Win Myint ◽  
...  

Extensive land use changes in forest frontier landscapes are leading to trade-offs in the supply of ecosystem services (ES) with, in many cases, as yet unknown effects on human well-being. In the Tanintharyi Region of Myanmar, a forest frontier landscape facing oil palm and rubber expansion, little is known about local perspectives on ES and the direct impact of trade-offs from land use change. This study assessed the trade-offs experienced with respect to 10 locally important ES from land user perspectives using social valuation techniques. The results show that while intact forests provide the most highly valued ES bundle, the conversion to rubber plantations entails fewer negative trade-offs than that to oil palm. Rubber plantations offer income, fuelwood, a good microclimate, and even new cultural identities. By contrast, oil palm concessions have caused environmental pollution, and, most decisively, have restricted local people’s access to the respective lands. The ES water flow regulation is seen as the most critical if more forest is converted; other ES, such as non-timber forest products, can be more easily substituted. We conclude that, from local perspectives, the impact of ES trade-offs highly depends on access to land and opportunities to adapt to change.


Author(s):  
Tatiana Kaletová ◽  
Luis Loures ◽  
Rui Alexandre Castanho ◽  
Elena Aydin ◽  
José Telo da Gama ◽  
...  

Ecosystem services (ES), as an interconnection of the landscape mosaic pieces, along with temporal rivers (IRES) are an object of research for environmental planners and ecological economists, among other specialists. This study presents (i) a review on the importance of IRES and the services they can provide to agricultural landscapes; (ii) a classification tool to assess the impact of IRES to provide ES by agricultural landscapes; (iii) the application of the proposed classification to the Caia River in order to identify the importance of this intermittent river for its surrounding agricultural landscape. The classification of the ES follows the Common International Classification of Ecosystem (CICES) classification that was adapted for the purposes of this study. Firstly, the list of ES provided by agricultural landscape was elaborated. In the next step, we assessed the potential of IRES to provide ES. Next, IRES impacts to ES within the agricultural landscape were evaluated according to observations from the conducted field monitoring in the study area. This study focuses on the relevance of the intermittent Caia River—a transboundary river in Spain and Portugal—and its ephemeral tributaries in the agricultural landscape. Our study estimates that each hydrological phase of IRES increases the ES provided by the agricultural landscape. However, the dry phase can potentially have negative impacts on several services. The intensification of the agricultural sector is the main provision of the water resource within the Caia River basin, but we were able to identify several other ES that were positively impacted. The present study is in line with the conclusions of other authors who state that IRES constitute a valuable resource which should not be underestimated by society.


Sign in / Sign up

Export Citation Format

Share Document