scholarly journals Effects of different vasopressors on the contraction of the superior mesenteric artery and uterine artery in rats during late pregnancy

Author(s):  
Tingting Wang ◽  
Limei Liao ◽  
Xiaohui Tang ◽  
Bin Li ◽  
Shaoqiang Huang

Abstract Background:Hypotension after neuraxial anaesthesia is one of the most common complications during caesarean section. Vasopressors are generally agreed to be the most effective way to improve hypotension, but it is unclear which of these drugs is best for caesarean section. We assessed the effects of vasopressors on the contractile response of uterine arteries and superior mesenteric arteries in pregnant rats, with the goal of identifying a drug that raises the blood pressure of the systemic circulation while minimally affecting the uterine and placental circulation. Methods: Isolated ring segments from the uterine and superior mesenteric arteries of pregnant rats were mounted in organ baths, and their contractile responses to several vasopressor agents were studied. Concentration-response curves for norepinephrine, phenylephrine, metaraminol and vasopressin were constructed. Results:The experimental results showed that the contractile response of the mesenteric artery to norepinephrine, as measured by the pEC50 of the drug, was stronger than that of the uterine artery (5.617 ± 0.11 vs. 4.493 ± 1.35, p=0.009), and the contractile response of the uterine artery to metaraminol was stronger than that of the mesenteric artery (pEC50: 5.084±0.17 vs 4.92±0.10, p=0.007). There was no statistically significant difference in the pEC50 of phenylephrine or vasopressin between the two blood vessels. Conclusion: In vitro experiments show that compared with phenylephrine, metaraminol , vasopressin, norepinephrine can contract peripheral blood vessel more strongly, while having the least effect on the contraction of uterine artery. These findings provide some support for the use of norepinephrine in mothers between the time of neuraxial anaesthesia and the delivery of the foetus.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tingting Wang ◽  
Limei Liao ◽  
Xiaohui Tang ◽  
Bin Li ◽  
Shaoqiang Huang

Abstract Background Hypotension after neuraxial anaesthesia is one of the most common complications during caesarean section. Vasopressors are the most effective method to improve hypotension, but which of these drugs is best for caesarean section is not clear. We assessed the effects of vasopressors on the contractile response of uterine arteries and superior mesenteric arteries in pregnant rats to identify a drug that increases the blood pressure of the systemic circulation while minimally affecting the uterine and placental circulation. Methods Isolated ring segments from the uterine and superior mesenteric arteries of pregnant rats were mounted in organ baths, and the contractile responses to several vasopressor agents were studied. Concentration-response curves for norepinephrine, phenylephrine, metaraminol and vasopressin were constructed. Results The contractile response of the mesenteric artery to norepinephrine, as measured by the pEC50 of the drug, was stronger than the uterine artery (5.617 ± 0.11 vs. 4.493 ± 1.35, p = 0.009), and the contractile response of the uterine artery to metaraminol was stronger than the mesenteric artery (pEC50: 5.084 ± 0.17 vs. 4.92 ± 0.10, p = 0.007). There was no statistically significant difference in the pEC50 of phenylephrine or vasopressin between the two blood vessels. Conclusions In vitro experiments showed that norepinephrine contracts peripheral blood vessels more strongly and had the least effect on uterine artery contraction. These findings support the use of norepinephrine in mothers between the time of neuraxial anaesthesia and the delivery of the foetus.


Author(s):  
Marianne Marianne ◽  
Urip Harahap ◽  
Emil Salim ◽  
Dadang Irfan Husori ◽  
Fahrumsyah Jali Rambe ◽  
...  

 Objectives: The objectives of the study were to examine the inhibitory effect of ethanol extract of Eriobotrya japonica leaves (EEEJL) pre-incubated with theophylline and aspirin on isolated guinea pig tracheal chains against acetylcholine (ACh)-induced contraction.Methods: The effect of EEEJL (1-8 mg/Ml) on the isolated tracheal strips was tested in vitro. Furthermore, the mechanism of relaxant effects of EEEJL was evaluated in the presence of theophylline and aspirin.Results: The contractile response evoked by Ach (1.25 × 10−3 M) was decreased by EEEJL (effective concentration50 = 1.36 mg/mL) and has no significant difference of relaxant effect to that of EEEJL pre-incubated with theophylline and aspirin (p>0.05).Conclusion: The EEEJL decreased the ACh-induced contraction through the inhibition of PDE and the protective effect on prostaglandin E2.


1997 ◽  
Vol 272 (3) ◽  
pp. H1087-H1093 ◽  
Author(s):  
P. Medina ◽  
I. Noguera ◽  
M. Aldasoro ◽  
J. M. Vila ◽  
B. Flor ◽  
...  

Vasopressin not only acts directly on blood vessels through V1-receptor stimulation but also may modulate adrenergic-mediated responses in animal experiments in vitro and in vivo. The aim of the present study was to investigate whether subpressor concentrations of vasopressin could modify the constrictor responses to norepinephrine and electrical stimulation of the perivascular nerves in human mesenteric arteries. Human mesenteric artery rings (3-3.5 mm long, 0.8-1.2 mm OD) were obtained from 38 patients undergoing abdominal operations. The arterial rings were suspended in organ bath chambers for isometric recording of tension. Vasopressin (3 x 10(-11) M) enhanced the contractions elicited by electrical stimulation at 2, 4, and 8 Hz (by 100, 100, and 72%, respectively) and produced a leftward shift of the concentration-response curves to norepinephrine (half-maximal effective concentration decreased from 2.2 x 10(-6) to 5.0 x 10(-7) M; P < 0.05) without any alteration in maximal contractions. Vasopressin also potentiated KCl- and calcium-induced contractions. The V1-receptor antagonist 1-[beta-mercapto-beta,beta-cyclopentamethylenepropionic acid-2-O-methyl-tyrosine, 8-arginine]vasopressin (10(-6) M) prevented the potentiation evoked by vasopressin in all cases. The calcium antagonist nifedipine (10(-6) M) did not affect the potentiation of electrical stimulation and norepinephrine induced by vasopressin but abolished KCl-induced contractions. The results suggest that vasopressin, in addition to its direct vasoconstrictor effect, strongly potentiates the responses to adrenergic stimulation and KCl depolarization. Both the direct and indirect effects of vasopressin appear to be mediated by V1-receptor stimulation. The amplifying effect of vasopressin on constrictor responses may be relevant in those clinical situations characterized by increased plasma vasopressin levels.


2005 ◽  
Vol 289 (5) ◽  
pp. H1923-H1932 ◽  
Author(s):  
Daniel Martí ◽  
Raquel Miquel ◽  
Khalid Ziani ◽  
Regina Gisbert ◽  
M. Dolores Ivorra ◽  
...  

The mRNA levels for the three α1-adrenoceptor subtypes, α1A, α1B, and α1D, were quantified by real-time RT-PCR in arteries from Wistar rats. The α1D-adrenoceptor was prominent in both aorta (79.0%) and mesenteric artery (68.7%), α1A predominated in tail (61.7%) and small mesenteric artery (73.3%), and both α1A- and α1D-subtypes were expressed at similar levels in iliac artery. The mRNA levels of the α1B-subtype were a minority in all vessels (1.7–11.1%). Concentration-response curves of contraction in response to phenylephrine or relaxation in response to α1-adrenoceptor antagonists on maximal sustained contraction induced by phenylephrine were constructed from control vessels and vessels pretreated with 100 μmol/l chloroethylclonidine (CEC) for 30 min. The significant decrease in the phenylephrine potency observed after CEC treatment together with the inhibitory potency displayed by 8-{2-[4-(2-methoxyphenyl)-1-piperazinyl]-8-azaspiro ( 4 , 5 ) decane-7-dionedihydrochloride} (BMY-7378, an α1D-adrenoceptor antagonist) confirm the relevant role of α1D-adrenoceptors in aorta and iliac and proximal mesenteric arteries. The potency of 5-methylurapidil (an α1A-adrenoceptor antagonist) and the changes in the potency of both BMY-7378 and 5-methylurapidil after CEC treatment provided evidence of a mixed population of α1A- and α1D-adrenoceptors in iliac and distal mesenteric arteries. The low potency of prazosin (pIC50 < 9) as well as the high 5-methylurapidil potency in tail and small mesenteric arteries suggest the main role of α1A/α1L-adrenoceptors with minor participation of the α1D-subtype. The mRNA levels and CEC treatment corroborated this pattern and confirmed that the α1L-adrenoceptor could be a functional isoform of the α1A-subtype.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 95-95 ◽  
Author(s):  
Steven Knapper ◽  
Alan K. Burnett ◽  
Amanda F. Gilkes ◽  
Kenneth I. Mills ◽  
Val Walsh

Abstract Activating mutations of the receptor tyrosine kinase FLT3 are present in approximately one-third of AML cases and are associated with an adverse prognosis. FLT3 is expressed in over 90% of cases of AML and many non-mutants show evidence of FLT3 activation, which may play a significant signalling role in leukaemogenesis, making FLT3 an attractive therapeutic target. CEP701 (Cephalon) and PKC412 (Novartis) are orally-bioavailable indolocarbazole derivatives that potently inhibit FLT3 phosphorylation. We studied the relationship between in vitro inhibition of FLT3 phosphorylation and induction of cytotoxicity in primary AML blasts from 12 patients. 7 of the cases were FLT3 mutants (6 ITDs and 1 D835 point mutant), the amount of mutant RNA varying between 7% and 84% of total FLT3 RNA expressed. The blasts were exposed for 1 hour to a range of concentrations of CEP701 and PKC412, lysed and immunoprecipitated with an anti-FLT3 antibody. After sequential immunoblotting with anti-phosphotyrosine and anti-FLT3 antibodies, inhibition of FLT3 phosphorylation was measured by densitometry. Both drugs inhibited FLT3 phosphorylation in all samples with lower concentrations required in FLT3 mutants. CEP701 inhibited FLT3 phosphorylation with median IC50s of 3.7nM and 11.9nM in mutant and wild type (WT) cases respectively (p=0.0006). IC50s for PKC412 were 7.7nM and 59.8nM in mutant and WT cases (p=0.0268). Induction of cytotoxicity was assessed by MTS assay following 72-hour exposure of blasts to a range of concentrations of CEP701 and PKC412. Cytotoxic responses to both drugs were greater in FLT3 mutants than WT cases at each dose studied and in terms of IC50 dose (median IC50s in mutant and WT cases: 95nM and 231nM with CEP701, 1.24 μM and 1.61μM with PKC412) although these differences did not reach statistical significance. Annexin V binding apoptosis assay produced similar dose response curves. Both agents showed greater inter-case variability in cytotoxic response than in sensitivity to inhibition of FLT3 phosphorylation. A lack of cytotoxic response to FLT3 inhibition with CEP701 was seen in the ITD mutant with the lowest ratio of mutant to WT FLT3 RNA (0.08) and several WT samples displayed resistance to in vitro induction of cytotoxicity despite almost complete inhibition of FLT3. Induction of cytotoxicity with PKC412 in both mutant and WT cases generally required doses well in excess of those required to fully inhibit FLT3 phosphorylation. Cases were further stratified by flow cytometric measurement of surface FLT3 expression, and by immunoblotting to measure STAT5 dephosphorylation in response to both drugs. No significant difference in overall FLT3 expression was seen between mutant and WT cases. Interestingly the highest FLT3 expression level was seen in a wild type case that was highly sensitive to CEP701. Inhibition of STAT5 phosphorylation appeared closely linked to FLT3 inhibition, although in some cases a good cytotoxic response was achieved despite failure to inhibit STAT5, suggesting involvment of other signalling pathways. In summary, although both CEP701 and PKC412 predictably and reliably inhibit FLT3 phosphorylation in primary AML blasts, their induction of cytotoxicity appears to be much more variable. A number of factors may influence this including variations in level of dependency on FLT3 signalling for blast survival, mutant to WT allele ratio and overall FLT3 expression level. Effects on targets other than FLT3 also need to be considered.


1978 ◽  
Vol 56 (5) ◽  
pp. 823-827 ◽  
Author(s):  
C. J. Hanna ◽  
S. H. Roth

The guinea pig tracheal spiral strip is a useful preparation for studying bronchoconstrictor and bronchodilator compounds. Employing a simple and rapid modification of this technique, experiments were performed in vitro to quantitate the effects of selected bronchospastic agents on guinea pig tracheobronchial smooth muscle. Three sections of the main airways were prepared from each animal: an upper tracheal, a lower tracheal, and a bronchial segment. The dose-dependent contractile responses of the three tissue segments were determined for carbachol, acetylcholine, histamine, 5-hydroxytryptamine, and bradykinin, Differences were observed amongst the agonists in magnitudes of contraction, effective concentration ranges, and slopes of dose–response curves. ED25, ED50, and ED75, values were calculated from regression analysis of dose–response data. The relative order for these agents to produce maximum contractions was found to be carbachol [Formula: see text] acetylcholine > histamine > 5-hydroxytryptamine > bradykinin. Furthermore, it was found that there was no significant difference between the three tissue segments in their responses to the various agonists.


1993 ◽  
Vol 265 (6) ◽  
pp. H2137-H2141 ◽  
Author(s):  
M. Nakashima ◽  
P. M. Vanhoutte

The present study was designed to determine whether endothelin (ET) induces endothelium-dependent hyperpolarization in the isolated rat mesenteric artery and, if so, to identify the receptor subtype involved. Main superior mesenteric arteries of Wistar-Kyoto and spontaneously hypertensive rats were used for the measurement of electrical responses of smooth muscle cells, using glass microelectrode. In tissues with endothelium of both strains, ET-1 (10(-8) M) caused an initial transient hyperpolarization followed by a sustained depolarization. In tissues without endothelium, only depolarization was observed. ET-3 (10(-8) M) produced transient hyperpolarizations only in preparations with endothelium. There was no significant difference in maximal amplitude of hyperpolarization between the two strains. BQ-123 (selective ETA-receptor antagonist) blocked the depolarization to ET-1 but did not inhibit hyperpolarizing responses to either isopeptide. IRL-1620 (specific ETB-receptor agonist) produced transient membrane hyperpolarizations in tissues with endothelium. The hyperpolarizations induced by ET were not affected by NG-nitro-L-arginine. These data suggest that both ET-1 and ET-3 can cause endothelium-dependent hyperpolarization in the rat mesenteric artery and that the endothelial receptor involved may belong to ETB subtype.


Author(s):  
Tays Amanda Felisberto Gonçalves ◽  
Renildo Moura da Cunha ◽  
Dionatas Ulises de Oliveira Meneguetti ◽  
Marcio Roberto Viana Santos ◽  
José Maria Barbosa- Filho ◽  
...  

Aims: To evaluate the vasorelaxant effect induced by the essential oil of the leaves of O. duckei Vattimo (ODEO) and its main constituent, trans-caryophyllene, in rat superior mesenteric arteries. Methodology: Isolated rat superior mesenteric rings were suspended by cotton threads for isometric tension recordings in Tyrode’s solution at 37ºC, gassed with 95% O2 and 5% CO2 and different ODEO concentrations (0.1-300 μg/mL) or trans-caryophyllene (1-1000 μg/mL) were added cumulatively to the organ baths. Results: Vasorelaxant effect induced by the essential oil of Ocotea duckei leaves (ODEO) and its main constituent, trans-caryophyllene (60.54 %), was evaluated in this work. In intact isolated rat superior mesenteric rings ODEO (0.1-300 μg/mL, n=6) induced concentration-dependent relaxation of tonus induced by phenylephrine (10 µM) or K+-depolarizing solution (KCl 80 mM) (IC50=31±5, 5±0.4 µg/mL, respectively, n=6). The relaxations of phenylephrine-induced contractions were not significantly attenuated after removal of the vascular endothelium (IC50=25±5 µg/mL). ODEO antagonized the concentration-response curves to CaCl2 (10-6-3x10-2 M) and Bay K 8644 (10-10-3x10-6 M). Furthermore, in nominally without calcium solution, ODEO significantly inhibited, in a concentration-dependent manner, transient contractions induced by 10 µM phenylephrine or 20 µM caffeine. Trans-caryophyllene induced vasorelaxations, however, this effect was 18.6 times less potent when compared to ODEO-induced vasorelaxations. Conclusion: The relaxant effect induced by ODEO in rat superior mesenteric artery rings is endothelium-independent and seems to be related to both, inhibition of Ca2+ influx through L-type voltage-gated Ca2+-channels sensitive to dihydropyridines and inhibition of the calcium release from intracellular IP3-and caffeine-sensitive stores.


2016 ◽  
pp. S391-S399 ◽  
Author(s):  
J. TÖRÖK ◽  
A. ZEMANČÍKOVÁ ◽  
Z. KOCIANOVÁ

The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from arterial sympathetic nerves during transmural electrical stimulation or after application of tyramine. In contrast, the abdominal aorta with intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the responses to noradrenaline were similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats (SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impaired anticontractile influence of PVAT might significantly contribute to its increased sensitivity to adrenergic stimuli.


1995 ◽  
Vol 78 (2) ◽  
pp. 428-432 ◽  
Author(s):  
G. N. Colasurdo ◽  
J. E. Loader ◽  
J. P. Graves ◽  
G. L. Larsen

We studied the mechanisms involved in the airway smooth muscle (ASM) contraction to substance P (SP) in normal (control) and allergen-sensitized (immune) rabbits as well as immune rabbits exposed to allergen via the airways (immune challenged). Cumulative concentration-response curves to SP (1 x 10(-9) to 1 x 10(-4) M) were performed in ASM segments in the absence and presence of atropine (10(-5) M) in vitro. The maximal contractile response (g tension/g tissue) at 10(-4) M SP and ASM contractions at various concentrations of SP were expressed as means +/- SE. We found no difference in the contractile response to SP between control and immune animals. ASM segments obtained from immune-challenged rabbits were more responsive to SP. Atropine shifted to the right the concentration-response curves and decreased the maximal ASM contraction at 10(-4) M SP in all three groups; this effect, however, was greater in immune-challenged tissues. These findings demonstrate an increased contractile response to SP in immune-challenged animals mediated by a more pronounced facilitation of cholinergic neurotransmission. We conclude that the final ASM response to SP is the result of a complex interaction between direct effects on ASM and indirect effects through modulation of cholinergic neurotransmission.


Sign in / Sign up

Export Citation Format

Share Document