scholarly journals Targeting tumor microenvironment: Metformin suppresses IL-22 induced hepatocellular carcinoma by upregulating Hippo signaling pathway

2020 ◽  
Author(s):  
Dong Zhao ◽  
Tao Zhou ◽  
Yi Luo ◽  
Chenchen Wang ◽  
Dongwei Xu ◽  
...  

Abstract BackgroundEpidemiological studies have shown direct associations between type 2 diabetes and the risk of cancers. Accumulating evidence indicates that metformin is profoundly implicated in preventing tumor development. However, the exact mechanism underlying the anti-tumor effects of metformin in hepatocellular carcinoma (HCC) is still not clear. MethodsIn this study, we investigated the effects of metformin on a mouse hepatocellular carcinoma (HCC) model and interleukin-22 (IL-22)-associated carcinogenesis in vitro.ResultsWe found that metformin significantly suppressed the incidence and tumor burden of HCC in the diethyl-nitrosamine (DEN)-induced HCC mouse model. As expected, expression of IL-22, an important factor involved in HCC progression, was markedly reduced by metformin. Treatment of HCC cells with metformin inhibited IL-22 induced cell proliferation, migration and invasion, and promoted cell apoptosis. Furthermore, ectopic expression of IL-22 makes HCC more aggressive whereas metformin largely compromised it in vitro and in vivo. Mechanistically, the whole transcriptome analysis and functional analysis revealed that Hippo signaling pathway was involved in the anti-tumor ability of metformin. Consistent with this, metformin directly activated Mst1/2, phosphorylated YAP1 in vitro. After blocking Hippo pathway by XMU-MP-1, the inhibitor of MST1/2, the inhibitory effects by metformin were dramatically attenuated as shown by in vitro study.ConclusionsCollectively, our findings illuminate a new regulatory mechanism, metformin activates Hippo signaling pathway to regulate IL-22 mediated HCC progression and provide new insights into its tumor-suppressive roles.

2020 ◽  
Author(s):  
Dong Zhao ◽  
Tao Zhou ◽  
Yi Luo ◽  
Chenchen Wang ◽  
Dongwei Xu ◽  
...  

Abstract Background: Epidemiological studies have shown direct associations between type 2 diabetes and the risk of cancers. Accumulating evidence indicates that metformin is profoundly implicated in preventing tumor development. However, the exact mechanism underlying the anti-tumor effects of metformin in hepatocellular carcinoma (HCC) is still not clear. Methods: In this study, we investigated the effects of metformin on a mouse hepatocellular carcinoma (HCC) model and interleukin-22 (IL-22)-associated carcinogenesis in vitro. Results: We found that metformin significantly suppressed the incidence and tumor burden of HCC in the diethyl-nitrosamine (DEN)-induced HCC mouse model. As expected, expression of IL-22, an important factor involved in HCC progression, was markedly reduced by metformin. Treatment of HCC cells with metformin inhibited IL-22 induced cell proliferation, migration and invasion, and promoted cell apoptosis. Furthermore, ectopic expression of IL-22 makes HCC more aggressive whereas metformin largely compromised it in vitro and in vivo. Mechanistically, the whole transcriptome analysis and functional analysis revealed that Hippo signaling pathway was involved in the anti-tumor ability of metformin. Consistent with this, metformin directly activated Mst1/2, phosphorylated YAP1 in vitro. After blocking Hippo pathway by XMU-MP-1, the inhibitor of MST1/2, the inhibitory effects by metformin were dramatically attenuated as shown by in vitro study. Conclusions: Collectively, our findings illuminate a new regulatory mechanism, metformin activates Hippo signaling pathway to regulate IL-22 mediated HCC progression and provide new insights into its tumor-suppressive roles.


2021 ◽  
Author(s):  
Maonan Wang ◽  
Manli Dai ◽  
Dan Wang ◽  
Ting Tang ◽  
Fang Xiong ◽  
...  

Abstract BackgroundLong noncoding RNAs (lncRNAs) play an important role in the regulation of gene expression and are involved in several pathological responses. However, many important lncRNAs in breast cancer have not been identified and their expression levels and functions in breast cancer remain unknown.MethodsWe used the microarray data to identify differentially expressed lncRNAs between breast cancer and adjacent breast epithelial tissues. In vitro and in vivo assays were used to explore the biological effects of the differentially expressed lncRNA Apoptosis-Associated Transcript in Bladder Cancer (AATBC) in breast cancer cells. The mass spectrometry and RNA pulldown were used to screen AATBC interacting proteins. Using the Kaplan-Meier method, survival analysis was performed.ResultsThe expression of AATBC was significantly high in breast cancer samples, and this high AATBC level was tightly correlated with poor prognosis in breast cancer patients. In vitro and in vivo experiments indicated that AATBC promoted breast cancer cells migration and invasion. AATBC specifically interacted with Y-box binding protein 1 (YBX1), which activated the YAP1/Hippo signaling pathway by binding to macrophage stimulating 1 (MST1) and promoting the nuclear translocation of Yes associated protein 1 (YAP1), allowing its function as a nuclear transcriptional regulator. ConclusionsAATBC is highly expressed in breast cancer and contributes to patients’ progression, indicating that it could serve as a novel prognostic marker for the disease. Mechanistically, AATBC affects migration and invasion of breast cancer cells through an AATBC-YBX1-MST1 axis, resulting in activating the YAP1/Hippo signaling pathway. This is also an important supplement to the composition of the YAP1/Hippo signaling pathway. The model of “AATBC-YAP1” may bring a new dawn to the treatment of breast cancer.


Oncogene ◽  
2020 ◽  
Vol 39 (38) ◽  
pp. 6099-6112
Author(s):  
Dehai Wu ◽  
Yan Wang ◽  
Guangchao Yang ◽  
Shugeng Zhang ◽  
Yao Liu ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality in the United States. Exploring the mechanism of HCC and identifying ideal targets is critical. In the present study, we demonstrated metabolism dysfunction might be a key diver for the development of HCC. The mitochondrial amidoxime reducing component 2 (MARC2) as a newly discovered molybdenum enzyme was downregulated in human HCC tissues and HCC cells. Downregulated MARC2 was significantly associated with clinicopathological characteristics of HCC, such as tumor size, AFP levels, and tumor grade and was an independent risk factor of poor prognosis. Both in vitro and in vivo studies suggested that MARC2 suppressed the progression of HCC by regulating the protein expression level of p27. The Hippo signaling pathway and RNF123 were required for this process. Moreover, MARC2 regulated expression of HNF4A via the Hippo signaling pathway. HNF4A was recruited to the promoter of MARC2 forming a feedback loop. MARC2 levels were downregulated by methylation. We demonstrated the prognostic value of MARC2 in HCC and determined the mechanism by which MARC2 suppressed the progression of HCC in this study. These findings may lead to new therapeutic targets for HCC.


Oncogene ◽  
2019 ◽  
Vol 39 (5) ◽  
pp. 1125-1139 ◽  
Author(s):  
Jianxiong Ji ◽  
Kaikai Ding ◽  
Tao Luo ◽  
Ran Xu ◽  
Xin Zhang ◽  
...  

Abstract The Hippo signaling pathway controls organ development and is also known, in cancer, to have a tumor suppressing role. Within the Hippo pathway, we here demonstrate, in human gliomas, a functional interaction of a transmembrane protein, prostate transmembrane protein, androgen induced 1 (PMEPA1) with large tumor suppressor kinase 1 (LATS1). We show that PMEPA1 is upregulated in primary human gliomas. The PMEPA1 isoform PMEPA1a was predominantly expressed in glioma specimens and cell lines, and ectopic expression of the protein promoted glioma growth and invasion in vitro and in an orthotopic xenograft model in nude mice. In co-immunoprecipitation experiments, PMEPA1a associated with the Hippo tumor suppressor kinase LATS1. This interaction led to a proteasomal degradation of LATS1 through recruitment of the ubiquitin ligase, neural precursor cell expressed, developmentally downregulated 4 (NEDD4), which led to silencing of Hippo signaling. Alanine substitution in PMEPA1a at PY motifs resulted in failed LATS1 degradation. Targeting of a downstream component in the Hippo signaling pathway, YAP, with shRNA, interfered with the growth promoting activities of PMEPA1a in vitro and in vivo. In conclusion, the presented work shows that PMEPA1a contributes to glioma progression by a dysregulation of the Hippo signaling pathway and thus represents a promising target for the treatment of gliomas.


Author(s):  
Lei Guan ◽  
Ting Li ◽  
Nanping Ai ◽  
Wei Wang ◽  
Bing He ◽  
...  

Abstract Background MEIS2 has been identified as one of the key transcription factors in the gene regulatory network in the development and pathogenesis of human cancers. Our study aims to identify the regulatory mechanisms of MEIS2 in hepatocellular carcinoma (HCC), which could be targeted to develop new therapeutic strategies. Methods The variation of MEIS2 levels were assayed in a cohort of HCC patients. The proliferation, clone-formation, migration, and invasion abilities of HCC cells were measured to analyze the effects of MEIS2C and MEIS2D (MEIS2C/D) knockdown with small hairpin RNAs in vitro and in vivo. Chromatin immunoprecipitation (ChIP) was performed to identify MEIS2 binding site. Immunoprecipitation and immunofluorescence assays were employed to detect proteins regulated by MEIS2. Results The expression of MEIS2C/D was increased in the HCC specimens when compared with the adjacent noncancerous liver (ANL) tissues. Moreover, MEIS2C/D expression negatively correlated with the prognosis of HCC patients. On the other hand, knockdown of MEIS2C/D could inhibit proliferation and diminish migration and invasion of hepatoma cells in vitro and in vivo. Mechanistically, MESI2C activated Wnt/β-catenin pathway in cooperation with Parafibromin (CDC73), while MEIS2D suppressed Hippo pathway by promoting YAP nuclear translocation via miR-1307-3p/LATS1 axis. Notably, CDC73 could directly either interact with MEIS2C/β-catenin or MEIS2D/YAP complex, depending on its tyrosine-phosphorylation status. Conclusions Our studies indicate that MEISC/D promote HCC development via Wnt/β-catenin and Hippo/YAP signaling pathways, highlighting the complex molecular network of MEIS2C/D in HCC pathogenesis. These results suggest that MEISC/D may serve as a potential novel therapeutic target for HCC.


2017 ◽  
Vol 44 (1) ◽  
pp. 255-266 ◽  
Author(s):  
Jinjin Liu ◽  
Jun Rao ◽  
Xuming Lou ◽  
Jian Zhai ◽  
Zhenhua Ni ◽  
...  

Background/Aims: The tripartite motif containing (TRIM) family plays crucial roles in tumor development and progression. However, little is known about the function and mechanism of TRIM11 in hepatocellular carcinoma (HCC). Methods: The expression levels of TRIM11 were examined by real-time PCR, Western blot and Immunohistochemical (IHC) staining. TRIM11 knockdown cells were produced by lentivirus infection, and functional assays, such as MTT, colony formation assay, migration and invasion assays and a xenograft tumor model were used to investigate the role of TRIM11 in HCC. We also determined the effect of TRIM11 on p53 signaling and its downstream molecules. Results: We found that TRIM11 mRNA and protein levels were significantly increased in HCC tissues as compared with normal tissues; increased levels correlated with poor patient survival. By loss- and gain-of-function investigations, knockdown of TRIM11 suppressed cell proliferation, migration, invasion in vitro and tumor growth in vivo. Moreover, TRIM11 negatively regulated p53 expression. Knockdown of p53 abrogated the in vitro and in vivo biological functions of TRIM11 shRNA in HCC cells. Conclusions: These data show that TRIM11 exerts its oncogenic effect in HCC by downregulating p53 both in vitro and in vivo. Our data provide new insights into the pathogenesis of HCC and indicate that TRIM11 may serve as a new therapeutic target for HCC treatment.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Wang ◽  
Liangying Dan ◽  
Qianqian Li ◽  
Lili Li ◽  
Lan Zhong ◽  
...  

Abstract Background Recent studies suggested that ZMYND10 is a potential tumor suppressor gene in multiple tumor types. However, the mechanism by which ZMYND10 inhibits breast cancer remains unclear. Here, we investigated the role and mechanism of ZMYND10 in breast cancer inhibition. Results ZMYND10 was dramatically reduced in multiple breast cancer cell lines and tissues, which was associated with promoter hypermethylation. Ectopic expression of ZMYND10 in silenced breast cancer cells induced cell apoptosis while suppressed cell growth, cell migration and invasion in vitro, and xenograft tumor growth in vivo. Furthermore, molecular mechanism studies indicated that ZMYND10 enhances expression of miR145-5p, which suppresses the expression of NEDD9 protein through directly targeting the 3'-untranslated region of NEDD9 mRNA. Conclusions Results from this study show that ZMYND10 suppresses breast cancer tumorigenicity by inhibiting the miR145-5p/NEDD9 signaling pathway. This novel discovered signaling pathway may be a valid target for small molecules that might help to develop new therapies to better inhibit the breast cancer metastasis.


2015 ◽  
Vol 35 (3) ◽  
pp. 957-968 ◽  
Author(s):  
Cheng Xiang ◽  
Jia Li ◽  
Liaoliao Hu ◽  
Jian Huang ◽  
Tao Luo ◽  
...  

Background: The Hippo signaling pathway, a highly conserved cell signaling system, exists in most multicellular organisms and regulates cell proliferation, differentiation, and apoptosis. It has been reported that the members of Hippo signaling are expressed in mammalian ovaries, but the exact functions of this pathway in primordial follicle development remains unclear. Methods: To analyze the spatio-temporal correlation between the core component of Hippo pathway and the size of primordial follicle pool, Western blot, Real-time PCR and immunohistochemistry were used, and the expression and localization of MST1, LATS2 and YAP1 mRNA and protein were examined in 3 d, 1 m, 5 m, 16 m postnatal mice ovary and the culture model of mice primordial follicle in vitro. Results: Both the protein and mRNA expression of the MST1 and LATS2 were decreased significantly as mouse age increased (p < 0.05), however, the mRNA expression of them increased significantly in 16 m compared with 5 m as well as the protein expression of LATS2.The expression of YAP showed the opposite trend, and the significant protein expression of pYAP was increased before 1 m, after which no significant change was observed. Moreover, the ratio of pYAP/YAP decreased significantly. Culturing ovaries for 8 d in vitro resulted in the activation of primordial follicles in 3 d postnatal mice ovaries, and these developed into primary follicles with the expression of PCNA increasing significantly (p < 0.05). The mRNA and protein expression of MST and LATS decreased significantly (p < 0.05), and the expression of YAP increased significantly (p < 0.05, p < 0.01), whereas the ratio of pYAP/YAP decreased significantly (p < 0.05). Conclusion: The above results reveal that the expression of the core components of Hippo pathway changed during mouse follicular development, especially before and after primordial follicle activation in vitro. The primordial follicle activation may be related to the significant decrease of the ratio of pYAP1/YAP1. In conclusion, Hippo signaling pathway expressed in mice ovaries and have spatio-temporal correlation with the size of primordial follicle pool.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juan Xiong ◽  
Panpan Jiang ◽  
Li Zhong ◽  
Youling Wang

ObjectClinically, the effective treatment options available to thyroid cancer (THCA) patients are very limited. Elucidating the features of tumor suppressor genes (TSGs) and the corresponding signal transduction cascade may provide clues for the development of new strategies for targeted therapy of THCA. Therefore, this paper aims to explore the mechanism of ZNF24 underlying promoting THCA cell senescence at molecular level.MethodsWe performed RT-PCR and Western Blotting for evaluating associated RNA and protein expression. CCK8, colony forming, wound healing and Transwell chamber assays were conducted to examine THCA cell proliferation, invasion and migration. β-galactosidase staining assay was performed to detect THCA cells senescence. The size and volume of xenotransplanted tumors in nude mice are calculated to asses ZNF24 effect in vivo.ResultsEctopic expression of ZNF24 significantly inhibited the cell viability, colony forming, migration and invasion abilities of THCA cell lines (K1/GLAG-66i and BCPAPi) (P &lt; 0.05). ZNF24 induced BCPAPi cells senescence through regulating Wnt signaling pathway. ZNF24 inhibited Wnt signaling pathway activition by competitively binding β-catenin from LEF1/TCF1-β-catenin complex. In nude mice, both Ectopic expression of ZNF24 and 2,4-Da (the strong β-catenin/Tcf-4 inhibitor) treatment significantly decreased both the size and weight of xenotransplanted tumors when compared with control mice (P &lt; 0.05).ConclusionResults obtained in vivo and in vitro reveal the role of ZNF24 in significantly suppressing THCA tumorigenesis and invasion by regulating Wnt signaling pathway.


2019 ◽  
Vol 101 (5) ◽  
pp. 1001-1017 ◽  
Author(s):  
Michele R Plewes ◽  
Xiaoying Hou ◽  
Pan Zhang ◽  
Aixin Liang ◽  
Guohua Hua ◽  
...  

Abstract Yes-associated protein 1 (YAP1) is a major component of the Hippo signaling pathway. Although the exact extracellular signals that control the Hippo pathway are currently unknown, increasing evidence supports a critical role for the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. Granulosa cells (GCs) within the ovarian follicle proliferate and produce steroids and growth factors, which facilitate the growth of follicle and maturation of the oocyte. We hypothesize that YAP1 plays a role in proliferation and estrogen secretion of GCs. In the current study, we examined the expression of the Hippo signaling pathway in bovine ovaries and determined whether it was important for GC proliferation and estrogen production. Mammalian STE20-like protein kinase 1 (MST1) and large tumor suppressor kinase 2 (LATS2) were identified as prominent upstream components of the Hippo pathway expressed in granulosa and theca cells of the follicle and large and small cells of the corpus luteum. Immunohistochemistry revealed that YAP1 was localized to the nucleus of growing follicles. In vitro, nuclear localization of the downstream Hippo signaling effector proteins YAP1 and transcriptional co-activator with PDZ-binding motif (TAZ) was inversely correlated with GC density, with greater nuclear localization under conditions of low cell density. Treatment with verteporfin and siRNA targeting YAP1 or TAZ revealed a critical role for these transcriptional co-activators in GC proliferation. Furthermore, knockdown of YAP1 in GCs inhibited follicle-stimulating hormone (FSH)-induced estradiol biosynthesis. The data indicate that Hippo pathway transcription co-activators YAP1/TAZ play an important role in GC proliferation and estradiol synthesis, two processes necessary for maintaining normal follicle development.


Sign in / Sign up

Export Citation Format

Share Document