scholarly journals Targeting Tumor Microenvironment: Metformin Suppresses IL-22 Induced Hepatocellular Carcinoma by Upregulating Hippo Signalling Pathway.

2020 ◽  
Author(s):  
Dong Zhao ◽  
Tao Zhou ◽  
Yi Luo ◽  
Chenchen Wang ◽  
Dongwei Xu ◽  
...  

Abstract Background: Epidemiological studies have shown direct associations between type 2 diabetes and the risk of cancers. Accumulating evidence indicates that metformin is profoundly implicated in preventing tumor development. However, the exact mechanism underlying the anti-tumor effects of metformin in hepatocellular carcinoma (HCC) is still not clear. Methods: In this study, we investigated the effects of metformin on a mouse hepatocellular carcinoma (HCC) model and interleukin-22 (IL-22)-associated carcinogenesis in vitro. Results: We found that metformin significantly suppressed the incidence and tumor burden of HCC in the diethyl-nitrosamine (DEN)-induced HCC mouse model. As expected, expression of IL-22, an important factor involved in HCC progression, was markedly reduced by metformin. Treatment of HCC cells with metformin inhibited IL-22 induced cell proliferation, migration and invasion, and promoted cell apoptosis. Furthermore, ectopic expression of IL-22 makes HCC more aggressive whereas metformin largely compromised it in vitro and in vivo. Mechanistically, the whole transcriptome analysis and functional analysis revealed that Hippo signaling pathway was involved in the anti-tumor ability of metformin. Consistent with this, metformin directly activated Mst1/2, phosphorylated YAP1 in vitro. After blocking Hippo pathway by XMU-MP-1, the inhibitor of MST1/2, the inhibitory effects by metformin were dramatically attenuated as shown by in vitro study. Conclusions: Collectively, our findings illuminate a new regulatory mechanism, metformin activates Hippo signaling pathway to regulate IL-22 mediated HCC progression and provide new insights into its tumor-suppressive roles.

2020 ◽  
Author(s):  
Dong Zhao ◽  
Tao Zhou ◽  
Yi Luo ◽  
Chenchen Wang ◽  
Dongwei Xu ◽  
...  

Abstract BackgroundEpidemiological studies have shown direct associations between type 2 diabetes and the risk of cancers. Accumulating evidence indicates that metformin is profoundly implicated in preventing tumor development. However, the exact mechanism underlying the anti-tumor effects of metformin in hepatocellular carcinoma (HCC) is still not clear. MethodsIn this study, we investigated the effects of metformin on a mouse hepatocellular carcinoma (HCC) model and interleukin-22 (IL-22)-associated carcinogenesis in vitro.ResultsWe found that metformin significantly suppressed the incidence and tumor burden of HCC in the diethyl-nitrosamine (DEN)-induced HCC mouse model. As expected, expression of IL-22, an important factor involved in HCC progression, was markedly reduced by metformin. Treatment of HCC cells with metformin inhibited IL-22 induced cell proliferation, migration and invasion, and promoted cell apoptosis. Furthermore, ectopic expression of IL-22 makes HCC more aggressive whereas metformin largely compromised it in vitro and in vivo. Mechanistically, the whole transcriptome analysis and functional analysis revealed that Hippo signaling pathway was involved in the anti-tumor ability of metformin. Consistent with this, metformin directly activated Mst1/2, phosphorylated YAP1 in vitro. After blocking Hippo pathway by XMU-MP-1, the inhibitor of MST1/2, the inhibitory effects by metformin were dramatically attenuated as shown by in vitro study.ConclusionsCollectively, our findings illuminate a new regulatory mechanism, metformin activates Hippo signaling pathway to regulate IL-22 mediated HCC progression and provide new insights into its tumor-suppressive roles.


2021 ◽  
Author(s):  
Maonan Wang ◽  
Manli Dai ◽  
Dan Wang ◽  
Ting Tang ◽  
Fang Xiong ◽  
...  

Abstract BackgroundLong noncoding RNAs (lncRNAs) play an important role in the regulation of gene expression and are involved in several pathological responses. However, many important lncRNAs in breast cancer have not been identified and their expression levels and functions in breast cancer remain unknown.MethodsWe used the microarray data to identify differentially expressed lncRNAs between breast cancer and adjacent breast epithelial tissues. In vitro and in vivo assays were used to explore the biological effects of the differentially expressed lncRNA Apoptosis-Associated Transcript in Bladder Cancer (AATBC) in breast cancer cells. The mass spectrometry and RNA pulldown were used to screen AATBC interacting proteins. Using the Kaplan-Meier method, survival analysis was performed.ResultsThe expression of AATBC was significantly high in breast cancer samples, and this high AATBC level was tightly correlated with poor prognosis in breast cancer patients. In vitro and in vivo experiments indicated that AATBC promoted breast cancer cells migration and invasion. AATBC specifically interacted with Y-box binding protein 1 (YBX1), which activated the YAP1/Hippo signaling pathway by binding to macrophage stimulating 1 (MST1) and promoting the nuclear translocation of Yes associated protein 1 (YAP1), allowing its function as a nuclear transcriptional regulator. ConclusionsAATBC is highly expressed in breast cancer and contributes to patients’ progression, indicating that it could serve as a novel prognostic marker for the disease. Mechanistically, AATBC affects migration and invasion of breast cancer cells through an AATBC-YBX1-MST1 axis, resulting in activating the YAP1/Hippo signaling pathway. This is also an important supplement to the composition of the YAP1/Hippo signaling pathway. The model of “AATBC-YAP1” may bring a new dawn to the treatment of breast cancer.


Oncogene ◽  
2020 ◽  
Vol 39 (38) ◽  
pp. 6099-6112
Author(s):  
Dehai Wu ◽  
Yan Wang ◽  
Guangchao Yang ◽  
Shugeng Zhang ◽  
Yao Liu ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality in the United States. Exploring the mechanism of HCC and identifying ideal targets is critical. In the present study, we demonstrated metabolism dysfunction might be a key diver for the development of HCC. The mitochondrial amidoxime reducing component 2 (MARC2) as a newly discovered molybdenum enzyme was downregulated in human HCC tissues and HCC cells. Downregulated MARC2 was significantly associated with clinicopathological characteristics of HCC, such as tumor size, AFP levels, and tumor grade and was an independent risk factor of poor prognosis. Both in vitro and in vivo studies suggested that MARC2 suppressed the progression of HCC by regulating the protein expression level of p27. The Hippo signaling pathway and RNF123 were required for this process. Moreover, MARC2 regulated expression of HNF4A via the Hippo signaling pathway. HNF4A was recruited to the promoter of MARC2 forming a feedback loop. MARC2 levels were downregulated by methylation. We demonstrated the prognostic value of MARC2 in HCC and determined the mechanism by which MARC2 suppressed the progression of HCC in this study. These findings may lead to new therapeutic targets for HCC.


2017 ◽  
Vol 44 (1) ◽  
pp. 255-266 ◽  
Author(s):  
Jinjin Liu ◽  
Jun Rao ◽  
Xuming Lou ◽  
Jian Zhai ◽  
Zhenhua Ni ◽  
...  

Background/Aims: The tripartite motif containing (TRIM) family plays crucial roles in tumor development and progression. However, little is known about the function and mechanism of TRIM11 in hepatocellular carcinoma (HCC). Methods: The expression levels of TRIM11 were examined by real-time PCR, Western blot and Immunohistochemical (IHC) staining. TRIM11 knockdown cells were produced by lentivirus infection, and functional assays, such as MTT, colony formation assay, migration and invasion assays and a xenograft tumor model were used to investigate the role of TRIM11 in HCC. We also determined the effect of TRIM11 on p53 signaling and its downstream molecules. Results: We found that TRIM11 mRNA and protein levels were significantly increased in HCC tissues as compared with normal tissues; increased levels correlated with poor patient survival. By loss- and gain-of-function investigations, knockdown of TRIM11 suppressed cell proliferation, migration, invasion in vitro and tumor growth in vivo. Moreover, TRIM11 negatively regulated p53 expression. Knockdown of p53 abrogated the in vitro and in vivo biological functions of TRIM11 shRNA in HCC cells. Conclusions: These data show that TRIM11 exerts its oncogenic effect in HCC by downregulating p53 both in vitro and in vivo. Our data provide new insights into the pathogenesis of HCC and indicate that TRIM11 may serve as a new therapeutic target for HCC treatment.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Wang ◽  
Liangying Dan ◽  
Qianqian Li ◽  
Lili Li ◽  
Lan Zhong ◽  
...  

Abstract Background Recent studies suggested that ZMYND10 is a potential tumor suppressor gene in multiple tumor types. However, the mechanism by which ZMYND10 inhibits breast cancer remains unclear. Here, we investigated the role and mechanism of ZMYND10 in breast cancer inhibition. Results ZMYND10 was dramatically reduced in multiple breast cancer cell lines and tissues, which was associated with promoter hypermethylation. Ectopic expression of ZMYND10 in silenced breast cancer cells induced cell apoptosis while suppressed cell growth, cell migration and invasion in vitro, and xenograft tumor growth in vivo. Furthermore, molecular mechanism studies indicated that ZMYND10 enhances expression of miR145-5p, which suppresses the expression of NEDD9 protein through directly targeting the 3'-untranslated region of NEDD9 mRNA. Conclusions Results from this study show that ZMYND10 suppresses breast cancer tumorigenicity by inhibiting the miR145-5p/NEDD9 signaling pathway. This novel discovered signaling pathway may be a valid target for small molecules that might help to develop new therapies to better inhibit the breast cancer metastasis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juan Xiong ◽  
Panpan Jiang ◽  
Li Zhong ◽  
Youling Wang

ObjectClinically, the effective treatment options available to thyroid cancer (THCA) patients are very limited. Elucidating the features of tumor suppressor genes (TSGs) and the corresponding signal transduction cascade may provide clues for the development of new strategies for targeted therapy of THCA. Therefore, this paper aims to explore the mechanism of ZNF24 underlying promoting THCA cell senescence at molecular level.MethodsWe performed RT-PCR and Western Blotting for evaluating associated RNA and protein expression. CCK8, colony forming, wound healing and Transwell chamber assays were conducted to examine THCA cell proliferation, invasion and migration. β-galactosidase staining assay was performed to detect THCA cells senescence. The size and volume of xenotransplanted tumors in nude mice are calculated to asses ZNF24 effect in vivo.ResultsEctopic expression of ZNF24 significantly inhibited the cell viability, colony forming, migration and invasion abilities of THCA cell lines (K1/GLAG-66i and BCPAPi) (P < 0.05). ZNF24 induced BCPAPi cells senescence through regulating Wnt signaling pathway. ZNF24 inhibited Wnt signaling pathway activition by competitively binding β-catenin from LEF1/TCF1-β-catenin complex. In nude mice, both Ectopic expression of ZNF24 and 2,4-Da (the strong β-catenin/Tcf-4 inhibitor) treatment significantly decreased both the size and weight of xenotransplanted tumors when compared with control mice (P < 0.05).ConclusionResults obtained in vivo and in vitro reveal the role of ZNF24 in significantly suppressing THCA tumorigenesis and invasion by regulating Wnt signaling pathway.


Author(s):  
Yanli Li ◽  
Yang Tian ◽  
Wei Zhong ◽  
Ning Wang ◽  
Yafeng Wang ◽  
...  

The tumor metastasis is the major hurdle for the treatment of advanced hepatocellular carcinoma (HCC), due in part to the lack of effective systemic treatments. DEPDC1, a novel oncoantigen upregulated in HCC, is thought to be a molecular-target for novel therapeutic drugs. Artemisia argyi is a traditional Chinese medicine with anti-inflammatory and anti-tumor activities. This study investigated the potential therapeutic benefits of Artemisia argyi essential oil (AAEO) in suppressing metastasis of HCC by targeting DEPDC1. Assessment of AAEO cytotoxicity was performed by MTT assay. Anti-metastatic effects of AAEO were investigated in vitro using wound healing and transwell assays. The HepG2 cells were transduced with lentiviral vector containing luciferase (Luc). A metastasis model of nude mice was established by tail vein injection of HepG2-Luc cells. The nude mice were treated with AAEO (57.5, 115, and 230 mg/kg) or sorafenib (40 mg/kg). Metastasis of HCC cells was monitored via in vivo bioluminescence imaging. After treatment for 21 days, tissues were collected for histological examination and immunohistochemistry analysis. Gene and protein levels were determined by real-time quantitative PCR and western blotting. The results revealed that AAEO significantly inhibits the migration and invasion in vitro in a concentration-dependent manner. In vivo assays further confirmed that AAEO markedly inhibits HCC metastasis into lung, brain, and femur tissues and exhibits low toxicity. Our results suggested that AAEO significantly downregulates the mRNA and protein expression of DEPDC1. Also, AAEO attenuated Wnt/β-catenin signaling through reduction of Wnt1 and β-catenin production. Moreover, AAEO prevented epithelial-mesenchymal transition (EMT) by downregulation of vimentin and upregulation of E-cadherin. Furthermore, we found that DEPDC1 promoted HCC migration and invasion via Wnt/β-catenin signaling pathway and EMT. These results demonstrate that AAEO effectively inhibits HCC metastasis via attenuating Wnt/β-catenin signaling and inhibiting EMT by suppressing DEPDC1 expression. Thus, AAEO likely acts as a novel inhibitor of the DEPDC1 dependent Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ganggang Wang ◽  
Jinghua Li ◽  
Ye Yao ◽  
Yingyi Liu ◽  
Peng Xia ◽  
...  

AbstractRecent studies show that small nucleolar RNAs (snoRNAs) play an important role in tumorigenesis. SNORA42 is a potential therapeutic target and prognostic biomarker for various cancers, and the aim of the present study was to investigate the function and clinical relevance of SNORA42 in hepatocellular carcinoma (HCC). We detected the expression levels of SNORA42 in HCC and normal liver tissue samples, as well as in tumor and hepatocyte-derived cell lines. SNORA42 was significantly upregulated in the HCC tissues and cells compared to the adjacent liver tissues and normal hepatocytes. Furthermore, overexpression of SNORA42 correlated with poor prognosis in the HCC patients. Knocking down SNORA42 in HCC cell lines decreased their proliferation, migration and invasion in vitro, and inhibited tumor growth and metastasis in vivo. In contrast, ectopic expression of SNORA42 promoted HCC cell proliferation and inhibited apoptosis. Mechanistically, SNORA42 exerted its oncogenic effects by targeting the p53 signaling pathway and cell cycle transition. In conclusion, SNORA42 acted as an oncogene in HCC and was a potential prognostic biomarker and therapeutic target.


Author(s):  
Yongjun Luo ◽  
Wei Liu ◽  
Pengyu Tang ◽  
Dongdong Jiang ◽  
Changjiang Gu ◽  
...  

Abstract Background Accumulating evidence indicates that aberrant microRNA (miRNA) expression contributes to osteosarcoma progression. This study aimed to elucidate the association between miR-624-5p expression and osteosarcoma (OS) development and to investigate its underlying mechanism. Methods We analyzed GSE65071 from the GEO database and found miR-624-5p was the most upregulated miRNA. The expression of miR-624-5p and its specific target gene were determined in human OS specimens and cell lines by RT-PCR and western blot. The effects of miR-624-5p depletion or ectopic expression on OS proliferation, migration and invasion were evaluated in vitro using CCK-8 proliferation assay, colony formation assay, transwell assay, would-healing assay and 3D spheroid BME cell invasion assay respectively. We investigated in vivo effects of miR-624-5p using a mouse tumorigenicity model. Besides, luciferase reporter assays were employed to identify interactions between miR-624-5p and its specific target gene. Results miR-624-5p expression was upregulated in OS cells and tissues, and overexpressing miR-624-5p led to a higher malignant level of OS, including cell proliferation, migration and invasion in vitro and in vivo. Protein tyrosine phosphatase receptor type B (PTPRB) was negatively correlated with miR-624-5p expression in OS tissues. Using the luciferase reporter assay and Western blotting, PTPRB was confirmed as a downstream target of miR-624-5p. PTPRB restored the effects of miR-624-5p on OS migration and invasion. The Hippo signaling pathway was identified as being involved in the miR-624-5p/PTPRB axis. Conclusions In conclusion, our results suggest that miR-624-5p is a negative regulator of PTPRB and a risk factor for tumor metastasis in OS progression.


Oncogene ◽  
2019 ◽  
Vol 39 (5) ◽  
pp. 1125-1139 ◽  
Author(s):  
Jianxiong Ji ◽  
Kaikai Ding ◽  
Tao Luo ◽  
Ran Xu ◽  
Xin Zhang ◽  
...  

Abstract The Hippo signaling pathway controls organ development and is also known, in cancer, to have a tumor suppressing role. Within the Hippo pathway, we here demonstrate, in human gliomas, a functional interaction of a transmembrane protein, prostate transmembrane protein, androgen induced 1 (PMEPA1) with large tumor suppressor kinase 1 (LATS1). We show that PMEPA1 is upregulated in primary human gliomas. The PMEPA1 isoform PMEPA1a was predominantly expressed in glioma specimens and cell lines, and ectopic expression of the protein promoted glioma growth and invasion in vitro and in an orthotopic xenograft model in nude mice. In co-immunoprecipitation experiments, PMEPA1a associated with the Hippo tumor suppressor kinase LATS1. This interaction led to a proteasomal degradation of LATS1 through recruitment of the ubiquitin ligase, neural precursor cell expressed, developmentally downregulated 4 (NEDD4), which led to silencing of Hippo signaling. Alanine substitution in PMEPA1a at PY motifs resulted in failed LATS1 degradation. Targeting of a downstream component in the Hippo signaling pathway, YAP, with shRNA, interfered with the growth promoting activities of PMEPA1a in vitro and in vivo. In conclusion, the presented work shows that PMEPA1a contributes to glioma progression by a dysregulation of the Hippo signaling pathway and thus represents a promising target for the treatment of gliomas.


Sign in / Sign up

Export Citation Format

Share Document