scholarly journals Upregulated TRIM11 Exerts its Oncogenic Effects in Hepatocellular Carcinoma Through Inhibition of P53

2017 ◽  
Vol 44 (1) ◽  
pp. 255-266 ◽  
Author(s):  
Jinjin Liu ◽  
Jun Rao ◽  
Xuming Lou ◽  
Jian Zhai ◽  
Zhenhua Ni ◽  
...  

Background/Aims: The tripartite motif containing (TRIM) family plays crucial roles in tumor development and progression. However, little is known about the function and mechanism of TRIM11 in hepatocellular carcinoma (HCC). Methods: The expression levels of TRIM11 were examined by real-time PCR, Western blot and Immunohistochemical (IHC) staining. TRIM11 knockdown cells were produced by lentivirus infection, and functional assays, such as MTT, colony formation assay, migration and invasion assays and a xenograft tumor model were used to investigate the role of TRIM11 in HCC. We also determined the effect of TRIM11 on p53 signaling and its downstream molecules. Results: We found that TRIM11 mRNA and protein levels were significantly increased in HCC tissues as compared with normal tissues; increased levels correlated with poor patient survival. By loss- and gain-of-function investigations, knockdown of TRIM11 suppressed cell proliferation, migration, invasion in vitro and tumor growth in vivo. Moreover, TRIM11 negatively regulated p53 expression. Knockdown of p53 abrogated the in vitro and in vivo biological functions of TRIM11 shRNA in HCC cells. Conclusions: These data show that TRIM11 exerts its oncogenic effect in HCC by downregulating p53 both in vitro and in vivo. Our data provide new insights into the pathogenesis of HCC and indicate that TRIM11 may serve as a new therapeutic target for HCC treatment.

2020 ◽  
Author(s):  
Ze-wei Lin ◽  
Qing-qi Ren ◽  
Zhi-feng Huang ◽  
Ji-kui Liu

Abstract Background Hepatocellular carcinoma (HCC) is an aggressive tumor with a poor prognosis. Long noncoding RNAs (lncRNAs) are key regulators of tumor development. However, lncRNA profiles in HCC remain largely unknown. In previous studies, we found that lncRNA DQ786243 plays an important role in the pathogenesis of HCC and promotes the development of HCC. In this study, we investigated the role of lncRNA DQ679794 in the pathogenesis of HCC. Methods and Results We first used quantitative real-time PCR among 64 paired HCC tissues, and the level of lncRNA DQ679794 was found to be significantly lower in tumors than in normal tissues. In addition, the effects of lncRNA DQ679794 were assessed by overexpression in vitro and in vivo . We found that the level of apoptosis was increased and that cell proliferation was weakened in HepG2 cells overexpressing DQ679794. Finally, the transplanted tumor experiment confirmed that after the overexpression of lncRNA DQ679794, the growth of transplanted tumors formed by liver cancer cells was inhibited. Conclusion This study suggests that lncRNA DQ679794 is an oncogene that inhibits tumor progression, and we believe that lncRNAs may be a key regulatory center in HCC progression.


2016 ◽  
Vol 38 (2) ◽  
pp. 836-846 ◽  
Author(s):  
Liyang Dong ◽  
Junwei Ni ◽  
Wenhao Hu ◽  
Chang Yu ◽  
Haiyan Li

Background/Aims: PlncRNA-1 has been demonstrated to promote malignancy in various cancers. The present study aims to investigate the expression pattern, prognosis value and the function of PlncRNA-1 in human hepatocellular carcinoma (HCC). Methods: The expression of PlncRNA-1 in 84 pairs of HCC and their matched normal tissues was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The correlations of PlncRNA-1 expression and clinicopathological characteristics and prognosis were also analyzed. The biological role of PlncRNA-1 in cell proliferation, migration and invasion was examined in vitro and in vivo. Results: The results showed that the level of PlncRNA-1 expression was significantly increased in HCC tissues and significantly correlated with tumor size, vascular invasion and advanced TNM stage. Moreover, patients with high levels of PlncRNA-1 expression had relatively poor prognostic outcomes, serving as an independent prognostic factor for HCC. In vitro functional assays indicated that knockdown of PlncRNA-1 expression significantly reduced cell proliferation, migration and invasion by inhibiting the epithelial-mesenchymal transition (EMT) signaling. Animal model experiments confirmed the ability of PlncRNA-1 to promote tumor growth in vivo. Conclusions: Taken together, our findings suggest that PlncRNA-1 may serve as an oncogene in HCC progression and represent a valuable prognostic marker and potential therapeutic target for HCC.


2020 ◽  
Author(s):  
Dong Zhao ◽  
Tao Zhou ◽  
Yi Luo ◽  
Chenchen Wang ◽  
Dongwei Xu ◽  
...  

Abstract BackgroundEpidemiological studies have shown direct associations between type 2 diabetes and the risk of cancers. Accumulating evidence indicates that metformin is profoundly implicated in preventing tumor development. However, the exact mechanism underlying the anti-tumor effects of metformin in hepatocellular carcinoma (HCC) is still not clear. MethodsIn this study, we investigated the effects of metformin on a mouse hepatocellular carcinoma (HCC) model and interleukin-22 (IL-22)-associated carcinogenesis in vitro.ResultsWe found that metformin significantly suppressed the incidence and tumor burden of HCC in the diethyl-nitrosamine (DEN)-induced HCC mouse model. As expected, expression of IL-22, an important factor involved in HCC progression, was markedly reduced by metformin. Treatment of HCC cells with metformin inhibited IL-22 induced cell proliferation, migration and invasion, and promoted cell apoptosis. Furthermore, ectopic expression of IL-22 makes HCC more aggressive whereas metformin largely compromised it in vitro and in vivo. Mechanistically, the whole transcriptome analysis and functional analysis revealed that Hippo signaling pathway was involved in the anti-tumor ability of metformin. Consistent with this, metformin directly activated Mst1/2, phosphorylated YAP1 in vitro. After blocking Hippo pathway by XMU-MP-1, the inhibitor of MST1/2, the inhibitory effects by metformin were dramatically attenuated as shown by in vitro study.ConclusionsCollectively, our findings illuminate a new regulatory mechanism, metformin activates Hippo signaling pathway to regulate IL-22 mediated HCC progression and provide new insights into its tumor-suppressive roles.


2020 ◽  
Author(s):  
Dong Zhao ◽  
Tao Zhou ◽  
Yi Luo ◽  
Chenchen Wang ◽  
Dongwei Xu ◽  
...  

Abstract Background: Epidemiological studies have shown direct associations between type 2 diabetes and the risk of cancers. Accumulating evidence indicates that metformin is profoundly implicated in preventing tumor development. However, the exact mechanism underlying the anti-tumor effects of metformin in hepatocellular carcinoma (HCC) is still not clear. Methods: In this study, we investigated the effects of metformin on a mouse hepatocellular carcinoma (HCC) model and interleukin-22 (IL-22)-associated carcinogenesis in vitro. Results: We found that metformin significantly suppressed the incidence and tumor burden of HCC in the diethyl-nitrosamine (DEN)-induced HCC mouse model. As expected, expression of IL-22, an important factor involved in HCC progression, was markedly reduced by metformin. Treatment of HCC cells with metformin inhibited IL-22 induced cell proliferation, migration and invasion, and promoted cell apoptosis. Furthermore, ectopic expression of IL-22 makes HCC more aggressive whereas metformin largely compromised it in vitro and in vivo. Mechanistically, the whole transcriptome analysis and functional analysis revealed that Hippo signaling pathway was involved in the anti-tumor ability of metformin. Consistent with this, metformin directly activated Mst1/2, phosphorylated YAP1 in vitro. After blocking Hippo pathway by XMU-MP-1, the inhibitor of MST1/2, the inhibitory effects by metformin were dramatically attenuated as shown by in vitro study. Conclusions: Collectively, our findings illuminate a new regulatory mechanism, metformin activates Hippo signaling pathway to regulate IL-22 mediated HCC progression and provide new insights into its tumor-suppressive roles.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
JiangSheng Zhao ◽  
GuoFeng Chen ◽  
Jingqi Li ◽  
Shiqi Liu ◽  
Quan Jin ◽  
...  

Abstract Background PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC. Methods PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing. Results PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P = 0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2. Conclusions This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


2018 ◽  
Vol 51 (5) ◽  
pp. 2065-2072 ◽  
Author(s):  
Wei Bian ◽  
Hongfei Zhang ◽  
Miao Tang ◽  
Shaojun Zhang ◽  
Lichao Wang ◽  
...  

Background/Aims: Disseminated tumors, known as metastases, are responsible for ninety-percent of mortality due to cancer. Epithelial to mesenchymal transition, a phenomenon required for morphological conversion of non-motile discoid shaped epithelial cells to highly motile spindle-shaped mesenchymal cells, is thought to be a pre-requisite for metastatic progression. Metastasis-associated 1 (MTA1) protein is a prime inducer of EMT and metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the molecular mechanisms that regulate the expression and function of MTA1 in HCC have not been elucidated. Methods: In silico prediction algorithms were used to find microRNAs (miRNAs) that may target MTA1. We examined the relationship between the expression of MTA1 and miR-183 using quantitative real time PCR. We also determined the levels of the MTA1 protein using immunohistochemistry. Reporter assays, in the presence and absence of the miR-183 mimic, were used to confirm MTA1 as a bona fide target of miR183. The effect of miR-183 on HCC pathogenesis was determined using a combination of in vitro migration and invasion assay, together with in vivo xenograft experiments. The correlation between miR-183 and MTA1 expression was also studied in samples from HCC patients, and in The Cancer Genome Atlas dataset. Results: Analysis of the sequence database revealed that MTA1 is a putative target of miR-183. MTA1 protein and RNA expression showed opposite trends to miR-183 expression in breast, renal, prostate, and testicular tissue samples from cancer patients, and in the metastatic HCC cell line HepG2. An inverse correlation was also observed between MTA1 (high) and miR-183 (low) expression within samples from HHC patients and in the TCGA dataset. Reporter assays in HepG2 cells showed that miR-183 could inhibit translation of a reporter harboring the wild-type, but not the mutant miR-183 3’-untranslated region (UTR). In addition, miR-183 significantly inhibited in vitro migration and invasion in HepG2 cells, and in vivo hepatic metastasis. Conclusion: Our results reveal a novel post-transcriptional regulatory mechanism for MTA1 expression via miR-183, which is suppressed during HCC pathogenesis.


2018 ◽  
Vol 243 (7) ◽  
pp. 645-654 ◽  
Author(s):  
Yi-Quan Yan ◽  
Juan Xie ◽  
Jing-Fu Wang ◽  
Zhao-Feng Shi ◽  
Xiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most malignant diseases worldwide. The unfavorable clinical outcome and poor prognosis are due to high rates of recurrence and metastasis after treatments. Some scholars of traditional Chinese medicine suggested that endogenous wind-evil had played an important role in metastasis of malignant tumor. Therefore, the drug of dispelling wind-evil could be used to prevent cancer metastasis and improve the poor prognosis. So we wondered whether Scorpion, one of the most important wind calming drugs, has antitumor effect especially in epithelial–mesenchymal transition (EMT) and metastasis of HCC in this research. We found that Scorpion-medicated serum could inhibit proliferation, induce apoptosis, and decrease migration and invasion capacity of Hepa1-6 cells in vitro. Meanwhile, we observed that water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT, which is characterized by increased epithelial marker E-cadherin expression and decreased mesenchymal markers N-cadherin and Snail expression following Scorpion treatment both in vitro and in vivo. These results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis. Impact statement The unfavorable clinical outcome and poor prognosis of hepatocellular carcinoma (HCC) are due to high rates of recurrence and metastasis after treatments. Here we found Scorpion, one of the most important wind calming drugs, has antitumor effect. Scorpion-medicated serum inhibited the proliferation, induced apoptosis, and decreased migration and invasion capacity of Hepa1-6 cells in vitro. Water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT of HCC both in vitro and in vivo. Our results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanilla Xin Zhang ◽  
Karen Man-Fong Sze ◽  
Lo-Kong Chan ◽  
Daniel Wai-Hung Ho ◽  
Yu-Man Tsui ◽  
...  

Abstract Background Controversy over the benefits of antioxidants supplements in cancers persists for long. Using hepatocellular carcinoma (HCC) as a model, we investigated the effects of exogenous antioxidants N-acetylcysteine (NAC) and glutathione (GSH) on tumor formation and growth. Methods Multiple mouse models, including diethylnitrosamine (DEN)-induced and Trp53KO/C-MycOE-induced HCC models, mouse hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection were used. In vitro assays including ROS assay, colony formation, sphere formation, proliferation, migration and invasion, apoptosis, cell cycle assays were conducted. Western blot was performed for protein expression and RNA-sequencing to identify potential gene targets. Results In these multiple different mouse and cell line models, we observed that NAC and GSH promoted HCC tumor formation and growth, accompanied with significant reduction of intracellular reactive oxygen species (ROS) levels. Moreover, NAC and GSH promoted cancer stemness, and abrogated the tumor-suppressive effects of Sorafenib both in vitro and in vivo. Exogenous supplementation of NAC or GSH reduced the expression of NRF2 and GCLC, suggesting the NRF2/GCLC-related antioxidant production pathway might be desensitized. Using transcriptomic analysis to identify potential gene targets, we found that TMBIM1 was significantly upregulated upon NAC and GSH treatment. Both TCGA and in-house RNA-sequence databases showed that TMBIM1 was overexpressed in HCC tumors. Stable knockdown of TMBIM1 increased the intracellular ROS; it also abolished the promoting effects of the antioxidants in HCC cells. On the other hand, BSO and SSA, inhibitors targeting NAC and GSH metabolism respectively, partially abrogated the pro-oncogenic effects induced by NAC and GSH in vitro and in vivo. Conclusions Our data implicate that exogenous antioxidants NAC and GSH, by reducing the intracellular ROS levels and inducing TMBIM expression, promoted HCC formation and tumor growth, and counteracted the therapeutic effect of Sorafenib. Our study provides scientific insight regarding the use of exogenous antioxidant supplements in cancers.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


Sign in / Sign up

Export Citation Format

Share Document