scholarly journals RNA-sequencing reveals the expression profiles of tsRNAs and their potential carcinogenic role in cholangiocarcinoma

2021 ◽  
Author(s):  
Li-rong Yan ◽  
Ang Wang ◽  
Qian Xu ◽  
Ben-gang Wang

Abstract Background Recently, the incidence of cholangiocarcinoma (CCA) has gradually increased. As CCA has a poor prognosis, the ideal survival rate is scarce for patients. The abnormal expressed tsRNAs may regulate the progression of a variety of tumors, and tsRNAs is expected to become a new diagnostic biomarker of cancer. However, the expression of tsRNAs is obscure and should be elucidated in CCA. Methods High-throughput RNA sequencing technology (RNA-seq) was utilized to determine the overall expression profiles of tsRNAs in 3 pairs CCA and adjacent normal tissues and to screen the tsRNAs that were differentially expressed. The target genes of dysregulated tsRNAs were predicted and the biological effects and potential signaling pathways of these target genes were explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate 11 differentially expressed tRFs with 12 pairs CCA and adjacent normal tissues. Results High-throughput RNA-seq totally demonstrated 535 dysregulated tsRNAs, of which 241 tsRNAs were upregulated and 294 tsRNAs were downregulated in CCA compared with adjacent normal tissues (|log2 (fold change) |≥1 and P value < 0.05). GO and KEGG enrichment analyses indicated that the target genes of dysregulated tRFs (tRF-34-JJ6RRNLIK898HR, tRF-38-0668K87SERM492V and tRF-39-0668K87SERM492E2) were mainly enriched in the Notch signaling pathway, Hippo signaling pathway, cAMP signaling pathway and in growth hormone synthesis, secretion and action, etc. qRT-PCR result showed that tRF-34-JJ6RRNLIK898HR/tRF-38-0668K87SERM492V/tRF-39-0668K87SERM492E2 was down-regulated (P = 0.021) and tRF-20-LE2WMK81 was up-regulated in CCA (P = 0.033). Conclusion Differentially expressed tRFs in CCA are enriched in many pathways associated with neoplasms, which may impact the tumor progression and have potential to be diagnostic biomarkers and therapeutic targets of CCA.

2020 ◽  
Author(s):  
Li-rong Yan ◽  
Ang Wang ◽  
Qian Xu ◽  
Ben-gang Wang

Abstract Background: Recently, the incidence of cholangiocarcinoma (CCA) has gradually increased. As CCA has a poor prognosis, the ideal survival rate is scarce for patients. The abnormal expressed tsRNA may regulate the progression of a variety of tumors, and tsRNA is expected to become a new diagnostic marker of cancer. However, the expression of tsRNA is obscure and should be elucidated in CCA.Methods: We collected CCA tissues and adjacent normal tissues from three patients. High-throughput RNA-seq was utilized to determine the overall expression profiles of tsRNA in CCA and adjacent normal tissues and to screen the tsRNAs that were differentially expressed. The biological effects and potential signaling pathways of dysregulated tsRNAs between the CCA and adjacent normal tissues were explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses.Results: High-throughput RNA-seq totally demonstrated 535 dysregulated tsRNAs, of which 241 tsRNAs were upregulated and 294 tsRNAs were downregulated in CCA compared with adjacent normal tissues (|log2 (fold change)| >=1 and p value< 0.05). GO and KEGG enrichment analyses indicated that the target genes of dysregulated tRFs (tRF-34-JJ6RRNLIK898HR, tRF-38-0668K87SERM492V, tRF-39-0668K87SERM492E2) were mainly enriched in the Notch signaling pathway, Hippo signaling pathway, and cAMP signaling pathway and in growth hormone synthesis, secretion and action.Conclusion: Differentially expressed tRFs in CCA are enriched in many pathways associated with neoplasms, which may impact the progression of CCA.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1565
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jiang Hu ◽  
Xiu Liu ◽  
...  

Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.


2020 ◽  
Author(s):  
Dawei Zhang ◽  
Wenjing Wu ◽  
Xin Huang ◽  
Ke Xu ◽  
Cheng Zheng ◽  
...  

Abstract Background: Chinese domestic pig breeds are reputed for pork quality, but their low ratio of lean-to-fat carcass weight decreases production efficiency. A better understanding of the genetic regulation network of SC fat tissue is necessary for the rational selection of Chinese domestic pig breeds. In the present study, SC adipocytes were isolated from Jiaxing Black pigs (a Chinese indigenous pig breed with redundant SC fat deposition) and Large White pigs (a lean-type pig breed with relatively low SC fat deposition) and the expression profiles of mRNAs and lncRNAs were compared by RNA-seq analysis to identify biomarkers correlated with the differences of SC fat deposition between the two breeds.Results: A total of 3,371 differentially expressed genes (DEGs) and 1,182 differentially expressed lncRNAs (DELs) were identified in SC adipocytes between Jiaxing Black (JX) and Large White (LW) pigs, which included 797 upregulated mRNAs, 2,574 downregulated mRNAs, 461 upregulated lncRNAs and 721 downregulated lncRNAs. Gene Ontology and KEGG pathway analyses revealed that the DEGs and DELs were mainly involved in the immune response, cell fate determination, PI3K-Akt signaling pathway and MAPK signaling pathway, which are known to be related to adipogenesis and lipid metabolism. The expression levels of DEGs and DELs according to the RNA-seq data were verified by quantitative PCR, which showed 81.8% consistency. The differences in MAPK pathway activity between JX and LW pigs was confirmed by western blot analysis, with <100-fold elevated p38 phosphorylation in JX pigs.Conclusions: This study offers a detailed characterization of mRNAs and lncRNAs in fat- and lean-type pig breeds. The activity of the MAPK signaling pathway was found to be associated with subcutaneous adipogenesis. These results greatly enhance our understanding of the molecular mechanisms regulating SC fat deposition in pigs.


Lupus ◽  
2021 ◽  
pp. 096120332110614
Author(s):  
Yan Liang ◽  
Ji Zhang ◽  
Wenxian Qiu ◽  
Bo Chen ◽  
Ying Zhou ◽  
...  

Objective Lupus nephritis (LN) is a major end-organ complication of systemic lupus erythematosus (SLE), and the molecular mechanism of LN is not completely clear. Accumulating pieces of evidence indicate the potential vital role of tRNA-derived small RNAs (tsRNAs) in human diseases. Current study aimed to investigate the potential roles of tsRNAs in LN. Methods We herein employed high‐throughput sequencing to screen the expression profiles of tsRNAs in renal tissues of the LN and control groups. To validate the sequencing data, we performed quantitative real-time PCR (qRT-PCR) analysis. Correlational analysis of verified tsRNAs expression and clinical indicators was conducted using linear regression. The potential target genes were also predicted. The biological functions of tsRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Results Our findings revealed that the expression profiles of tsRNAs were significantly altered in the kidney tissues from LN patients compared with control. Overall, 160 tsRNAs were significantly dysregulated in the LN group, of which 79 were upregulated, whereas 81 were downregulated. Subsequent qRT-PCR results confirmed the different expression of candidate tsRNAs. Correlation analysis results found that expression of verified tsRNAs were correlated to clinical indicators. The target prediction results revealed that verified tsRNAs might act on 712 target genes. Further bioinformatics analysis uncovered tsRNAs might participate in the pathogenesis of LN through several associated pathways, including cell adhesion molecules, MAPK signaling pathway, PI3K-Akt signaling pathway and B cell receptor signaling pathway. Conclusion This study provides a novel insight for studying the mechanism of LN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Candice P. Chu ◽  
Shiguang Liu ◽  
Wenping Song ◽  
Ethan Y. Xu ◽  
Mary B. Nabity

AbstractDogs with X-linked hereditary nephropathy (XLHN) are an animal model for Alport syndrome in humans and progressive chronic kidney disease (CKD). Using mRNA sequencing (mRNA-seq), we have characterized the gene expression profile affecting the progression of XLHN; however, the microRNA (miRNA, miR) expression remains unknown. With small RNA-seq and quantitative RT-PCR (qRT-PCR), we used 3 small RNA-seq analysis tools (QIAGEN OmicSoft Studio, miRDeep2, and CPSS 2.0) to profile differentially expressed renal miRNAs, top-ranked miRNA target genes, and enriched biological processes and pathways in CKD progression. Twenty-three kidney biopsies were collected from 5 dogs with XLHN and 4 age-matched, unaffected littermates at 3 clinical time points (T1: onset of proteinuria, T2: onset of azotemia, and T3: advanced azotemia). We identified up to 23 differentially expressed miRNAs at each clinical time point. Five miRNAs (miR-21, miR-146b, miR-802, miR-142, miR-147) were consistently upregulated in affected dogs. We identified miR-186 and miR-26b as effective reference miRNAs for qRT-PCR. This study applied small RNA-seq to identify differentially expressed miRNAs that might regulate critical pathways contributing to CKD progression in dogs with XLHN.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Yaodong Zhao ◽  
Wenjing Ma ◽  
Xiaohong Wei ◽  
Yu Long ◽  
Ying Zhao ◽  
...  

Alfalfa (Medicago sativa L.) is a high quality leguminous forage. Drought stress is one of the main factors that restrict the development of the alfalfa industry. High-throughput sequencing was used to analyze the microRNA (miRNA) profiles of alfalfa plants treated with CK (normal water), PEG (polyethylene glycol-6000; drought stress), and PEG + SNP (sodium nitroprusside; nitric oxide (NO) sprayed externally under drought stress). We identified 90 known miRNAs belonging to 46 families and predicted 177 new miRNAs. Real-time quantitative fluorescent PCR (qRT-PCR) was used to validate high-throughput expression analysis data. A total of 32 (14 known miRNAs and 18 new miRNAs) and 55 (24 known miRNAs and 31 new miRNAs) differentially expressed miRNAs were identified in PEG and PEG + SNP samples. This suggested that exogenous NO can induce more new miRNAs. The differentially expressed miRNA maturation sequences in the two treatment groups were targeted by 86 and 157 potential target genes, separately. The function of target genes was annotated by gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) analysis. The expression profiles of nine selected miRNAs and their target genes verified that their expression patterns were opposite. This study has documented that analysis of miRNA under PEG and PEG + SNP conditions provides important insights into the improvement of drought resistance of alfalfa by exogenous NO at the molecular level. This has important scientific value and practical significance for the improvement of plant drought resistance by exogenous NO.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fei Tian ◽  
Rui Li ◽  
Zhenzhu Chen ◽  
Yanting Shen ◽  
Jiafeng Lu ◽  
...  

Lung cancer is the leading cause of cancer deaths. Non-small-cell lung cancer (NSCLC) is the major type of lung cancer. The aim of this study was to characterize the expression profiles of miRNAs in adenocarcinoma (AC), one major subtype of NSCLC. In this study, the miRNAs were detected in normal, adjacent, and tumor tissues by next-generation sequencing. Then the expression levels of differential miRNAs were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In the results, 259, 401, and 389 miRNAs were detected in tumor, adjacent, and normal tissues of pooled AC samples, respectively. In addition, for the first time we have found that miR-21-5p and miR-196a-5p were gradually upregulated from normal to adjacent to tumor tissues; miR-218-5p was gradually downregulated with 2-fold or greater change in AC tissues. These 3 miRNAs were validated by qRT-PCR. Lastly, we predicted target genes of these 3 miRNAs and enriched the potential functions and regulatory pathways. The aberrant miR-21-5p, miR-196a-5p, and miR-218-5p may become biomarkers for diagnosis and prognosis of lung adenocarcinoma. This research may be useful for lung adenocarcinoma diagnosis and the study of pathology in lung cancer.


APOPTOSIS ◽  
2019 ◽  
Vol 25 (1-2) ◽  
pp. 73-91 ◽  
Author(s):  
Yi-Kai Pan ◽  
Cheng-Fei Li ◽  
Yuan Gao ◽  
Yong-Chun Wang ◽  
Xi-Qing Sun

AbstractWeightlessness-induced cardiovascular dysfunction can lead to physiological and pathological consequences. It has been shown that spaceflight or simulated microgravity can alter expression profiles of some microRNAs (miRNAs). Here, we attempt to identify the role of miRNAs in human umbilical vein endothelial cells (HUVECs) apoptosis under simulated microgravity. RNA-sequencing and quantitative real-time PCR (qRT-PCR) assays were used to identify differentially expressed miRNAs in HUVECs under simulated microgravity. Then we obtained the target genes of these miRNAs through target analysis software. Moreover, GO and KEGG enrichment analysis were performed. The effects of these miRNAs on HUVECs apoptosis were evaluated by flow cytometry, Western blot and Hoechst staining. Furthermore, we obtained the target gene of miR-27b-5p by luciferase assay, qRT-PCR and Western blot. Finally, we investigated the relationship between this target gene and miR-27b-5p in HUVECs apoptosis under normal gravity or simulated microgravity. We found 29 differentially expressed miRNAs in HUVECs under simulated microgravity. Of them, the expressions of 3 miRNAs were validated by qRT-PCR. We demonstrated that miR-27b-5p affected HUVECs apoptosis by inhibiting zinc fingers and homeoboxes 1 (ZHX1). Our results reported here demonstrate for the first time that simulated microgravity can alter the expression of some miRNAs in HUVECs and miR-27b-5p may protect HUVECs from apoptosis under simulated microgravity by targeting ZHX1.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9280
Author(s):  
Jijun Song ◽  
Mingxin Song

Background Echinococcosis caused by larval of Echinococcus is prevalent all over the world. Although clinical experience showed that the presence of tapeworms could not be found in liver lesions, the repeated infection and aggravation of lesions still occur in the host. Here, this study constructed a multifactor-driven disease-related dysfunction network to explore the potential molecular pathogenesis mechanism in different hosts after E.multilocularis infection. Method First, iTRAQ sequencing was performed on human liver infected with E.multilocularis. Second, obtained microRNAs(miRNAs) expression profiles of humans and canine infected with Echinococcus from the GEO database. In addition, we also performed differential expression analysis, protein interaction network analysis, enrichment analysis, and crosstalk analysis to obtain genes and modules related to E.multilocularis infection. Pivot analysis is used to calculate the potential regulatory effects of multiple factors on the module and identify related non-coding RNAs(ncRNAs) and transcription factors(TFs). Finally, we screened the target genes of miRNAs of Echinococcus to further explore its infection mechanism. Results A total of 267 differentially expressed proteins from humans and 3,635 differentially expressed genes from canine were obtained. They participated in 16 human-related dysfunction modules and five canine-related dysfunction modules, respectively. Both human and canine dysfunction modules are significantly involved in BMP signaling pathway and TGF-beta signaling pathway. In addition, pivot analysis found that 1,129 ncRNAs and 110 TFs significantly regulated human dysfunction modules, 158 ncRNAs and nine TFs significantly regulated canine dysfunction modules. Surprisingly, the Echinococcus miR-184 plays a role in the pathogenicity regulation by targeting nine TFs and one ncRNA in humans. Similarly, miR-184 can also cause physiological dysfunction by regulating two transcription factors in canine. Conclusion The results show that the miRNA-184 of Echinococcus can regulate the pathogenic process through various biological functions and pathways. The results laid a solid theoretical foundation for biologists to further explore the pathogenic mechanism of Echinococcosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuhong Sun ◽  
Yishan Liu ◽  
Xinyu Gao ◽  
Mengxuan Du ◽  
Mengge Gao ◽  
...  

PurposeThis study aimed to investigate the profiles of messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) in peripheral blood samples collected from polycystic ovary syndrome (PCOS) patients. In addition, an in-depth bioinformatics analysis regarding the lncRNA-mRNA co-expression network was performed.MethodsHigh-throughput sequencing was used to measure the profiles of mRNAs and lncRNAs expressed in the peripheral blood samples isolated from six patients (three patients with PCOS and three normal women). In addition, five differentially expressed lncRNAs were chosen to validate the results of high-throughput sequencing by quantitative RT-PCR (qRT-PCR). Furthermore, a lncRNA-mRNA co-expression network was constructed using the Cytoscape software.ResultsA total of 14,276 differentially expressed mRNAs and 4,048 differentially expressed lncRNAs were obtained from the RNA-seq analysis of PCOS patients and healthy controls (adjusted q-value &lt; 0.05, Fold change &gt;2.0).The qRT-PCR results were consistent with the data obtained through high-throughput sequencing. Gene ontology (GO) and KEGG pathway analyses showed that the differentially expressed mRNAs were enriched in the chemokine signaling pathway. In addition, the analysis of the lncRNA-mRNA co-expression network of the chemokine signaling pathway showed the involvement of 6 mRNAs and 42 lncRNAs.ConclusionClusters of mRNAs and lncRNAs were aberrantly expressed in the peripheral blood of PCOS patients compared with the controls. In addition, several pairs of lncRNA-mRNAs in the chemokine signaling pathway may be related to PCOS genetically.


Sign in / Sign up

Export Citation Format

Share Document