scholarly journals The Overexpression of The VvWRKY2 Transcription Factor in Potato Improved the Agricultural Performance and Tubers’ Physio-Chemical and Industrial Properties Even Under Non‐Stress Conditions

Author(s):  
Nour Chiab ◽  
mariam kammoun ◽  
mariam charfeddine ◽  
rim mzid ◽  
radhia gargouri-bouzid

Abstract The tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors play important roles in plant growth and response to biotic and abiotic stresses. Several studies described WRKY factors overexpression in different plant species. In a number of cases, modification in morphology and seed size were described in transgenic plants overexpressing transcription factors from this family. In this work, we aimed to study the effect of a grapevine VvWRKY2 transcription factor on transgenic potato plants growth, yields and chemical properties of tubers produced out of any stress condition in the greenhouse and in the field. The results were compared with the wild type commercial variety "Belle de Fontenay" (WT). Data showed that the overexpression of the VvWRKY2 transcription factor increased significantly the leaf area and stem diameter of transgenic plants in comparison to WT. A modification of leaf shape was also noticed in VvWRKY2 overexpressing potato plants. The tuber yield, caliber, dry matter, starch and mineral content of transgenic tubers was higher than WT, while soluble sugars level decreased. All these results suggest that the VvWRKY2 overexpression in potato plants seems to have positive effect on plant vigor, yield and tuber quality under normal conditions in addition to its positive effect on plant response to stresses.

2002 ◽  
Vol 30 (4) ◽  
pp. 405-410 ◽  
Author(s):  
J. Szopa

14-3-3 proteins are abundant eukaryotic proteins that interact with many other proteins, thereby modulating their function and thus cell metabolism. The data from mRNA analysis confirm the developmental regulation of 14-3-3 isoform expression in potato plants. In order to test whether or not 14-3-3 protein expression affects plant phenotype and metabolism, transgenic potato plants either overexpressing Cucurbita pepo 14-3-3 or underexpressing endogenous 14-3-3 isoforms were analysed. An increase in tuber number and a decrease in tuber size in the over-expressed transformant was observed; the transgenic plants contain more chlorophyll than the control and they lose it more slowly than the control when transferred to the dark. The 14-3-3-repressed transgenic plants showed a decrease in tuber number and an increase in tuber size; an increase in the fresh weight of the transgenic tubers was also detected. The increased catecholamine level was accompanied by an increased ratio of soluble sugars to starch in overexpressed transformant. The opposite effect was detected in 14-3-3-repressed transgenic plants. All the repressed plants showed significant increases in nitrate reductase (NR) activity, suggesting that the regulation of NR occurs in vivo, and is not isoform-dependent. The increase in NR activity resulted in a significant decrease in nitrate level. The level of sucrose phosphate synthase activity was also significantly increased in all 14-3-3-underexpressed transgenes, and remarkably the increase in enzyme activity was accompanied by respective changes in sucrose levels in the tubers. The most intriguing finding was the significant (2–3-fold) increase in ethylene content in all the 14-3-3-repressed transgenic lines, which probably resulted from a methionine level increase. The substantial increase of ethylene level in the repressed forms might explain the significant shortening of the vegetation period of the analysed transgenic plants.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Vijay Kumar Singh ◽  
Avinash Mishra ◽  
Intesaful Haque ◽  
Bhavanath Jha

Abstract A salt- and drought-responsive novel gene SbSDR1 is predominantly localised to the nucleus, up-regulated under abiotic stresses and is involved in the regulation of metabolic processes. SbSDR1 showed DNA-binding activity to genomic DNA, microarray analysis revealed the upregulation of host stress-responsive genes and the results suggest that SbSDR1 acts as a transcription factor. Overexpression of SbSDR1 did not affect the growth and yield of transgenic plants in non-stress conditions. Moreover, the overexpression of SbSDR1 stimulates the growth of plants and enhances their physiological status by modulating the physiology and inhibiting the accumulation of reactive oxygen species under salt and osmotic stress. Transgenic plants that overexpressed SbSDR1 had a higher relative water content, membrane integrity and concentration of proline and total soluble sugars, whereas they showed less electrolyte leakage and lipid peroxidation than wild type plants under stress conditions. In field conditions, SbSDR1 plants recovered from stress-induced injuries and could complete their life cycle. This study suggests that SbSDR1 functions as a molecular switch and contributes to salt and osmotic tolerance at different growth stages. Overall, SbSDR1 is a potential candidate to be used for engineering salt and drought tolerance in crops without adverse effects on growth and yield.


2004 ◽  
Vol 2 (3) ◽  
pp. 25-31
Author(s):  
Elena A Andreeva ◽  
Ludmila A Lutova

Using agrobacterial transformation collection of /pr-transgenic plants based on cv. Adretta was obtained. Analysis of transgenic plants susceptibility to the exogenous phytohormones auxin (IAA) and cytokinin (kinetin) for 18 from 22 analyzed forms reveals altered reaction to hormones. Among 18 plants with altered reaction to phytohormones for 16 forms enhanced resistance to copper sulfate and/or nickel chloride was observed


1998 ◽  
Vol 53 (11-12) ◽  
pp. 1012-1016 ◽  
Author(s):  
Maria Borkowska ◽  
Magdalena Krzymowska ◽  
Andrzej Talarczyk ◽  
Malik F. M. Awan ◽  
Ludmila Yakovleva ◽  
...  

Abstract Soybean β-1,3-endoglucanase represents a model system for studies on early plant re­sponses to infection by fungal pathogens, and it has been implicated in the release of elicitors from fungal cell walls. In the present study, potato plants were transformed with the soybean β-1,3-endoglucanase cDNA via Agrobacterium delivery system. The transfer of the gene into potato genome was confirmed by (i) PCR amplification, (ii) Northern blot analyses, and (Hi) an increase in the activity of β-1,3-endoglucanase in transgenic plants. The transformation resulted in an increased resistance of selected transgenic plants to infection by Phytophthora infestans, an important pathogen.


2012 ◽  
Vol 54 (3) ◽  
pp. 803-817 ◽  
Author(s):  
Donia Bouaziz ◽  
Julien Pirrello ◽  
Mariam Charfeddine ◽  
Asma Hammami ◽  
Rania Jbir ◽  
...  

1999 ◽  
Vol 80 (11) ◽  
pp. 2813-2822 ◽  
Author(s):  
Liliana F. Franco-Lara ◽  
Kara D. McGeachy ◽  
Uli Commandeur ◽  
Robert R. Martin ◽  
Mike A. Mayo ◽  
...  

A full-length cDNA copy of the genome of Potato leafroll virus (PLRV) was introduced into the genome of tobacco and potato plants by Agrobacterium tumefaciens-mediated transformation. Transgenic lines were obtained in which the transgene was readily detected by PCR with DNA extracted from T1 tobacco seedlings and clonally multiplied potato plants. PLRV-specific genomic and sub- genomic RNAs, coat protein antigen and virus particles were detected in transgenic plants. Aphids fed on the transgenic tobacco plants readily transmitted PLRV to test plants. Infected transgenic tobacco plants, like non-transgenic (WT) PLRV-infected plants, displayed no symptoms of the infection but transgenic plants of potato were severely stunted. In parallel tests, the mean PLRV titres in WT tobacco plants and transgenic tobacco plants were 600 and 630 ng virus/g leaf, respectively, although differences in PLRV titres among transgenic plants were much greater than those among infected WT plants. In similar tests with potato, the mean PLRV titre of WT plants was 50 ng virus/g leaf whereas higher concentrations (up to 3400 ng virus/g leaf) accumulated in transgenic potato plants. In tissue prints of stems, PLRV was detected in similar proportions of phloem cells in transgenic and infected WT plants. In transgenic tobacco and potato plants, but not in infected WT plants, a few stem epidermal cells also contained virus. From tissue prints of transgenic tobacco leaves, it was estimated that about one in 40000 mesophyll cells contained virus, but in transgenic potato, a greater proportion of mesophyll cells was infected.


1999 ◽  
Vol 131 (4) ◽  
pp. 423-431 ◽  
Author(s):  
Jeff G. Stewart ◽  
Jennifer Feldman ◽  
Debby A. LeBlanc

AbstractPotato plants (Solanum tuberosum, cv. Russet Burbank) genetically altered to produce the CryIIIA protein from Bacillus thuringiensis var tenebrionis were tested for susceptibility to attack by the potato flea beetle, Epitrix cucumeris (Harris), on Prince Edward Island, Canada, from 1993 to 1996. Average weekly damage to the fourth terminal leaf of transgenic potato plants was 31% lower in 1993 and 20% lower in 1994 compared with nontransgenic plants. Transgenic plants had 29% fewer potato flea beetle adults when compared with nontransgenic plants in 1994, although no difference was detected between the two plant types in 1993. Recovery of potato flea beetle pupae in the soil was noticeably lower from transgenic plants expressing the CryIIIA protein in all parts of the plant (Construct No. RBBT02-10Y1) than from either the transgenic plants that expressed the CryIIIA protein primarily in the green foliage (Construct No. RBBT04-01) or the nontransgenic plants. Adult potato flea beetles, when given a choice between transgenic and nontransgenic leaf material, fed preferentially on nontransgenic material. In contrast, when adults were not given a choice, feeding damage was similar between treatments. These results suggest that the reason for reduced feeding on transgenic potato plants by the potato flea beetle is, at least in part, due to some toxicity of the plants to immature growth stages and a preference for adults to feed on nontransgenic material when it is available.


2014 ◽  
Vol 57 (3) ◽  
pp. 198-207 ◽  
Author(s):  
Seok-Jun Moon ◽  
Se-Youn Han ◽  
Dool-Yi Kim ◽  
Beom-Gi Kim ◽  
In Sun Yoon ◽  
...  

2018 ◽  
Vol 22 ◽  
pp. 299-304
Author(s):  
O. O. Ovcharenko ◽  
V. A. Rudas ◽  
N. L. Shcherbak ◽  
M. V. Kuchuk

Aim. The aim of our work was to obtain transgenic potato plants of Ukrainian varieties with the expression of a double-stranded RNA suppressor of proline dehydrogenase gene. We propose the decrease of proline degradation level and increase of overall proline concentration in obtained transgenic plants. Methods. The Agrobasterium tumefaciens-mediated method of genetic transformation to obtain transgenic plants of potato was used. Internodes of aseptic potato plants were transformed with a binary vector pBi2E containing an inverted repeats of two copies of proline dehydrogenase gene’s first exon and the gene of neomycin phosphotransferase II (nptII). Results. As a result of experiments kanamycin resistant transgenic potato lines of Deseiree, Belarusian 12 and Slavianka varieties were obtained. The transgenic nature of the obtained plants was confirmed by PCR with primers specific to the first exon of proline dehydrogenase and to nptII genes. Conclusions. The optimized conditions of genetic transformation and used agrobacterial strain allow to obtain the transgenic plants of a model potato variety Désirée, as well as varieties Belorussian 12 and Slovyanka which are of practical interest for cultivation in Ukraine. Keywords: transgenic plants, potatoes (Solanum tuberosum L.), stress resistance, proline.


Sign in / Sign up

Export Citation Format

Share Document