scholarly journals Ruthenium(III) Based Diimine Complexes; Synthesis, Characterization, PXRD Study and Catalytic Hydrogenation of Cyclohexene

Author(s):  
Abd El-Motaleb M Ramadan ◽  
Mohamed M. Ibrahim ◽  
Gaber A. M. Mersal ◽  
Ahmed M. Fathy ◽  
Morad M. El-Hendawy ◽  
...  

Abstract This study deals with preparation and characterization of a group of RuIII-chelates contains tetradentate diimine ligands. These quadridentate ligands are derived from 2-OH-1-naphthaldehyde and a number of aliphatic diamines where the number of methylene groups between the two azomethine nitrogen donors varied from two to six are the components of quadridentate ligands. The pure isolated compounds were subjected to several physicochemical investigations to assign their structures. Spectral and magnetic measurements suggested a distorted octahedral arrangement of the six coordinate diimine ruthenium(III) complexes. The structural optimization for one of the current RuIII-complexes was determined based on the processing of powder X-ray diffraction (PXRD) data by the computer program Expo 2014 PXRD. As well DFT calculations were applied to optimize the geometry in the case of complexes 1. The newly synthesized ruthenium(III) diimines were tested as catalysts for hydrogenation of cyclohexene. The effect of the catalyst structure and the type of catalysis as well as the nature and amount of the solvent used on the catalytic performance of the current catalysts were studied. Catalytic experiments reported that the ongoing ruthenium(III) complexes are promising precatalysts that have successfully catalyzed hydrogenation of cyclohexene by hydrogen gas under moderate process conditions. The results obtained allowed to establish a mechanism for the studied catalytic hydrogenation reactions.

Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 371 ◽  
Author(s):  
Seong Jo ◽  
Dong Ju ◽  
Suk Jung ◽  
Dong Ha ◽  
Ho Chae ◽  
...  

To investigate the catalytic performance of diesel reforming catalysts for production of hydrogen gas, Ni-Al catalyst was prepared by the polymer-modified incipient method (NA10-PM). NA10-PM showed excellent catalytic performance and economic feasibility in the auto-thermal reforming reaction, compared to other commercially available catalysts. In particular, auto-reduced NA10-PM showed higher dodecane conversion and similar selectivity at 750 °C compared to H2-reduced NA10-PM. X-ray diffraction (XRD) studies showed that the fresh state of NA10-PM initially automatically reduced by product gases through thermal decomposition of dodecane, and then NiAl2O4 was completely reduced to metallic nickel by the CO and H2 gases produced during the reaction. Additionally, catalytic performance of auto-reduced NA10-PM were investigated at varying steam/carbon molar ratio (S/C) and oxygen/carbon molar ratio (O2/C) in order to determine the optimum conditions of the auto-thermal reforming reaction. The conversion of dodecane over auto-reduced NA10-PM catalyst was remarkable (93%) and increased during the reaction, under conditions of S/C = 1.23, O2/C = 0.25, and gas hourly space velocity of 12,000 h−1 at 750 °C. The results of this study demonstrated that the auto-reduced NA10-PM catalyst was applied successfully for auto-thermal reforming of dodecane.


Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 334 ◽  
Author(s):  
Yuhan Chen ◽  
Qihua Jiang ◽  
Lili Sun ◽  
Qiang Li ◽  
Liping Zhou ◽  
...  

Enzymes are biocatalysts. In this study, a novel biocatalyst consisting of magnetic combined cross-linked enzyme aggregates (combi-CLEAs) of 3-quinuclidinone reductase (QNR) and glucose dehydrogenase (GDH) for enantioselective synthesis of (R)-3-quinuclidinolwith regeneration of cofactors in situ was developed. The magnetic combi-CLEAs were fabricated with the use of ammonium sulfate as a precipitant and glutaraldehyde as a cross-linker for direct immobilization of QNR and GDH from E. coli BL(21) cell lysates onto amino-functionalized Fe3O4 nanoparticles. The physicochemical properties of the magnetic combi-CLEAs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and magnetic measurements. Field emission scanning electron microscope (FE-SEM) images revealed a spherical structure with numerous pores which facilitate the movement of the substrates and coenzymes. Moreover, the magnetic combi-CLEAs exhibited improved operational and thermal stability, enhanced catalytic performance for transformation of 3-quinuclidinone (33 g/L) into (R)-3-quinuclidinol in 100% conversion yield and 100% enantiomeric excess (ee) after 3 h of reaction. The activity of the biocatalysts was preserved about 80% after 70 days storage and retained more than 40% of its initial activity after ten cycles. These results demonstrated that the magnetic combi-CLEAs, as cost-effective and environmentally friendly biocatalysts, were suitable for application in synthesis of (R)-3-quinuclidinol essential for the production of solifenacin and aclidinium with better performance than those currently available.


Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Bing ◽  
Faming Wang ◽  
Yuhuan Sun ◽  
Jinsong Ren ◽  
Xiaogang Qu

An environmentally friendly biomimetic strategy has been presented and validated for the catalytic hydrogenation reaction in live bacteria. In situ formed ultra-fine metal nanoparticles can realize highly efficient asymmetric hydrogenation reactions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 290
Author(s):  
Paulette Gómez-López ◽  
José Ángel Salatti-Dorado ◽  
Daily Rodríguez-Padrón ◽  
Manuel Cano ◽  
Clemente G. Alvarado-Beltrán ◽  
...  

We report a new class of polyacrylonitrile (PAN)-based Co-N-doped carbon materials that can act as suitable catalyst for oxygen evolution reactions (OER). Different Co loadings were mechanochemically added into post-consumed PAN fibers. Subsequently, the samples were treated at 300 °C under air (PAN-A) or nitrogen (PAN-N) atmosphere to promote simultaneously the Co3O4 species and PAN cyclization. The resulting electrocatalysts were fully characterized and analyzed by X-ray diffraction (XRD) and photoelectron spectroscopy (XPS), transmission (TEM) and scanning electron (SEM) microscopies, as well as nitrogen porosimetry. The catalytic performance of the Co-N-doped carbon nanomaterials were tested for OER in alkaline environments. Cobalt-doped PAN-A samples showed worse OER electrocatalytic performance than their homologous PAN-N ones. The PAN-N/3% Co catalyst exhibited the lowest OER overpotential (460 mV) among all the Co-N-doped carbon nanocomposites, reaching 10 mA/cm2. This work provides in-depth insights on the electrocatalytic performance of metal-doped carbon nanomaterials for OER.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Qui Quach ◽  
Erik Biehler ◽  
Ahmed Elzamzami ◽  
Clay Huff ◽  
Julia M. Long ◽  
...  

The current climate crisis warrants investigation into alternative fuel sources. The hydrolysis reaction of an aqueous hydride precursor, and the subsequent production of hydrogen gas, prove to be a viable option. A network of beta-cyclodextrin capped gold nanoparticles (BCD-AuNP) was synthesized and subsequently characterized by Powder X-Ray Diffraction (P-XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), and Ultraviolet-Visible Spectroscopy (UV-VIS) to confirm the presence of gold nanoparticles as well as their size of approximately 8 nm. The catalytic activity of the nanoparticles was tested in the hydrolysis reaction of sodium borohydride. The gold catalyst performed best at 303 K producing 1.377 mL min−1 mLcat−1 of hydrogen. The activation energy of the catalyst was calculated to be 54.7 kJ/mol. The catalyst resisted degradation in reusability trials, continuing to produce hydrogen gas in up to five trials.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Nur Aimi Jani ◽  
Choonyian Haw ◽  
Weesiong Chiu ◽  
Saadah Abdul Rahman ◽  
Poisim Khiew ◽  
...  

Current work reports the study of Ag nanocrystals (NCs) decorated doubly anodized (DA) TiO2 nanotubes (NTs) thin film as an efficient photoelectrode material for water splitting and photocatalytic hydrogen gas production. DA process has been shown to be capable of producing less defective NTs and creating additional spacious gaps in between NT bundles to allow efficient and uniform integration of Ag NCs. By employing photoreduction method, Ag NCs can be deposited directly onto NTs, where the size and density of coverage can be maneuvered by merely varying the concentration of Ag precursors. Field emission scanning electron microscope (FESEM) images show that the Ag NCs with controllable size are homogeneously decorated onto the walls of NTs with random yet uniform distribution. X-ray diffraction (XRD) results confirm the formation of anatase TiO2 NTs and Ag NCs, which can be well indexed to standard patterns. The decoration of metallic Ag NCs onto the surface of NTs demonstrates a significant enhancement in the photoconversion efficiency as compared to that of pristine TiO2 NTs. Additionally, the as-prepared nanocomposite film also shows improved efficiency when used as a photocatalyst platform in the production of hydrogen gas. Such improvement in the performance of water splitting and photocatalytic hydrogen gas production activity can be credited to the surface plasmonic resonance of Ag NCs present on the surface of the NTs, which renders improved light absorption and better charge separation. The current work can serve as a model of study for designing more advanced nanoarchitecture photoelectrode for renewable energy application.


1989 ◽  
Vol 67 (4) ◽  
pp. 662-670 ◽  
Author(s):  
Sanat K. Mandal ◽  
Laurence K. Thompson ◽  
Michael J. Newlands ◽  
Amal K. Biswas ◽  
Bibhutosh Adhikary ◽  
...  

Binuclear, antiferromagnetically coupled, macrocyclic copper(II) complexes, [Cu2(C28H32N4O4)]•H2O (II) and [Cu2(C36H32N4O4)]•CH3CN•H2O (III), involving asymmetric ligands with two deprotonated amide, two azomethine nitrogen, and two phenoxide donors at the binuclear centre, have been synthesized and characterized by single-crystal X-ray diffraction and variable temperature magnetic studies. Complex II crystallizes in the monoclinic system, space group P21/n, with a = 16.4854(9) Å, b = 7.6005(13) Å, c = 21.1617(11) Å, β = 104.090(5)°, Z = 4, Rf = 0.068 for 2062 significant reflections. The two copper(II) centres have square planar N2O2 donor sets with two phenoxide oxygen atoms bridging the copper centres with a copper–copper separation of 2.898(2) Å. A long copper–oxygen (amide) contact (2.808(10) Å) forms a weak dimer association. Complex III crystallizes in the triclinic system, space group [Formula: see text], with a = 8.7771(9) Å, b = 12.3983(16) Å, c = 15.7299(16) Å, α = 85.003(11)°, β = 84.574(8)°, γ = 76.838(10)°, Z = 2, Rf = 0.041 for 2966 significant reflections. The two copper(II) centres have distorted square-pyramidal geometry involving an N2O2 in plane donor set and two phenoxide oxygen bridges with a copper–copper separation of 3.018(1) Å. The fifth coordination site at each copper centre involves an amide oxygen from a neighbouring molecule (Cu(1)—O 2.371(4), Cu(2)—O 2.413(3) Å) in a staggered intermolecular array. Very strong antiferromagnetic exchange is observed in both cases (−2J = 689 ± 7 cm−1 (II), −2J = 816 ± 8 cm−1 (III)). Keywords: macrocycles, binuclear copper(II) complexes.


2011 ◽  
Vol 675-677 ◽  
pp. 747-750
Author(s):  
B. Han ◽  
Dong Ying Ju ◽  
Xiao Guang Yu

Water cavitation peening (WCP) with aeration, namely, a new ventilation nozzle with aeration is adopted to improve the process capability of WCP by increasing the impact pressure induced by the bubble collapse on the surface of components. In this study, in order to investigate the process capability of the WCP with aeration a standard N-type almen strips of spring steel SAE 1070 was treated byWCP with various process conditions, and the arc height value and the residual stress in the superficial layers were measured by means of the Almen-scale and X-ray diffraction method, respectively. The optimal fluxes of aeration and the optimal standoff distances were achieved. The maximum of arc height value reach around 150μm. The depth of plastic layer observed from the results of residual stresses is up to 150μm. The results verify the existence of macro-plastic strain in WCP processing. The distributions of residual stress in near-surface under different peening intensity can provide a reference for engineers to decide the optimal process conditions of WCP processing.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 244
Author(s):  
Carolina N. Keim ◽  
Jilder D. P. Serna ◽  
Daniel Acosta-Avalos ◽  
Reiner Neumann ◽  
Alex S. Silva ◽  
...  

On 5 November 2015, a large tailing deposit failed in Brazil, releasing an estimated 32.6 to 62 million m3 of iron mining tailings into the environment. Tailings from the Fundão Dam flowed down through the Gualaxo do Norte and Carmo riverbeds and floodplains and reached the Doce River. Since then, bottom sediments have become enriched in Fe(III) oxyhydroxides. Dissimilatory iron-reducing microorganisms (DIRMs) are anaerobes able to couple organic matter oxidation to Fe(III) reduction, producing CO2 and Fe(II), which can precipitate as magnetite (FeO·Fe2O3) and other Fe(II) minerals. In this work, we investigated the presence of DIRMs in affected and non-affected bottom sediments of the Gualaxo do Norte and Doce Rivers. The increase in Fe(II) concentrations in culture media over time indicated the presence of Fe(III)-reducing microorganisms in all sediments tested, which could reduce Fe(III) from both tailings and amorphous ferric oxyhydroxide. Half of our enrichment cultures converted amorphous Fe(III) oxyhydroxide into magnetite, which was characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The conversion of solid Fe(III) phases to soluble Fe(II) and/or magnetite is characteristic of DIRM cultures. The presence of DIRMs in the sediments of the Doce River and tributaries points to the possibility of reductive dissolution of goethite (α-FeOOH) and/or hematite (α-Fe2O3) from sediments, along with the consumption of organics, release of trace elements, and impairment of water quality.


Sign in / Sign up

Export Citation Format

Share Document