scholarly journals Massive economic costs of invasive bivalves in freshwater ecosystems

Author(s):  
Phillip J. Haubrock ◽  
Ross N. Cuthberg ◽  
Anthony Ricciardi ◽  
Christophe Diagne ◽  
Franck Courchamp

Abstract Many countries lack the economic capacity to effectively manage invasive species. Yet, the direct socioeconomic impact generally much outweighs the expected costs of prevention. A distinct lack of monetary cost quantification associated with key invasive species groups impedes decision-making, and thus resource allocation, by policy makers to address invasions. Here, we synthesize published global economic costs of impacts for one key taxonomic group – freshwater bivalves – whilst explicitly considering the reliability of estimation methodologies, cost types, economic sectors and impacted regions. Although several species from this group are notorious widespread invaders, estimations of their economic costs have remained relatively sparse. Cumulative total global costs of invasive macrofouling bivalves were US$ 63.6 billion (2017 USD) across all regions and socioeconomic sectors between 1980 and 2020. Costs were heavily biased taxonomically and spatially, dominated by two families, Dreissenidae and Cyrenidae (Corbiculidae), and largely constrained to North America. The largest share of reported costs ($ 30.6 billion) did not make the distinction between damage and management. However, of those that did, damages and resource losses were one order of magnitude higher ($ 30.3 billion) than control or preventative measures ($ 1.7 billion). Moreover, although many impacted socioeconomic sectors lacked specification, the largest shares of costs were incurred through authorities and stakeholders ($ 26.3 billion, e.g. public and private sector interventions) and by public and social welfare ($ 11.6 billion, e.g. via power/drinking water plant and irrigation system damage). Average cost estimates over the entire period amounted to approximately $ 1.6 billion per year, most of which was incurred in North America. We thus present novel cost quantifications that offer a strong economic incentive to invest in preventative management of invasive bivalves in freshwaters. However, these costs are severely underestimated because well-documented economic impacts are lacking for most invaded countries and most invasive bivalve species.

NeoBiota ◽  
2021 ◽  
Vol 67 ◽  
pp. 485-510
Author(s):  
Robert Crystal-Ornelas ◽  
Emma J. Hudgins ◽  
Ross N. Cuthbert ◽  
Phillip J. Haubrock ◽  
Jean Fantle-Lepczyk ◽  
...  

Invasive species can have severe impacts on ecosystems, economies, and human health. Though the economic impacts of invasions provide important foundations for management and policy, up-to-date syntheses of these impacts are lacking. To produce the most comprehensive estimate of invasive species costs within North America (including the Greater Antilles) to date, we synthesized economic impact data from the recently published InvaCost database. Here, we report that invasions have cost the North American economy at least US$ 1.26 trillion between 1960 and 2017. Economic costs have climbed over recent decades, averaging US$ 2 billion per year in the early 1960s to over US$ 26 billion per year in the 2010s. Of the countries within North America, the United States (US) had the highest recorded costs, even after controlling for research effort within each country ($5.81 billion per cost source in the US). Of the taxa and habitats that could be classified in our database, invasive vertebrates were associated with the greatest costs, with terrestrial habitats incurring the highest monetary impacts. In particular, invasive species cumulatively (from 1960–2017) cost the agriculture and forestry sectors US$ 527.07 billion and US$ 34.93 billion, respectively. Reporting issues (e.g., data quality or taxonomic granularity) prevented us from synthesizing data from all available studies. Furthermore, very few of the known invasive species in North America had reported economic costs. Therefore, while the costs to the North American economy are massive, our US$ 1.26 trillion estimate is likely very conservative. Accordingly, expanded and more rigorous economic cost reports are necessary to provide more comprehensive invasion impact estimates, and then support data-based management decisions and actions towards species invasions.


2021 ◽  
Author(s):  
David RENAULT ◽  
Elena ANGULO ◽  
Ross Cuthbert ◽  
Phillip J. HAUBROCK ◽  
César CAPINHA ◽  
...  

Abstract Invasive species are a major driver of global biodiversity loss, hampering conservation efforts and disrupting ecosystem functions and services. While accumulating evidence has documented ecological impacts of invasive species across major geographic regions, habitat types and taxonomic groups, appraisals for economic costs have remained relatively sparse. This has hindered effective cost-benefit analyses that inform expenditure on management interventions to prevent, control, and eradicate invasive species. Terrestrial invertebrates are a particularly pervasive and damaging group of invaders, with many species compromising primary economic sectors such as agriculture and health. The present study provides synthesised quantifications of economic costs caused by invasive terrestrial invertebrates on the global scale and across a range of descriptors, using the InvaCost database. Invasive terrestrial invertebrates reportedly cost the global economy US$ 1.26 trillion over the investigated period (1960–2020), mostly due to invasive insects (> 90%). Overall, costs were not equally distributed geographically, with North America (76%) reporting the greatest costs, with far lower costs reported in Europe (4%) Asia (4%), Africa (3%), South America (2%), and Oceania (1%). These costs mostly resulted from direct resource damages and losses (76%), particularly to agriculture and forestry; relatively little (4%) was invested in management. A minority of monetary costs was directly observed (43%), but costs were mostly sourced from highly reliable estimates (58%). Economic costs displayed an increasing trend with time, with an average annual cost of US$ 20.67 billion since 1960, but reporting lags reduced costs in recent years. The massive global economic costs of terrestrial invertebrates require urgent consideration and investment by policymakers and managers, in order to prevent and remediate the economic and ecological impacts of these and other invasive species groups.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas A. Neubauer ◽  
Torsten Hauffe ◽  
Daniele Silvestro ◽  
Jens Schauer ◽  
Dietrich Kadolsky ◽  
...  

AbstractThe Cretaceous–Paleogene mass extinction event 66 million years ago eradicated three quarters of marine and terrestrial species globally. However, previous studies based on vertebrates suggest that freshwater biota were much less affected. Here we assemble a time series of European freshwater gastropod species occurrences and inferred extinction rates covering the past 200 million years. We find that extinction rates increased by more than one order of magnitude during the Cretaceous–Paleogene mass extinction, which resulted in the extinction of 92.5% of all species. The extinction phase lasted 5.4 million years and was followed by a recovery period of 6.9 million years. However, present extinction rates in European freshwater gastropods are three orders of magnitude higher than even these revised estimates for the Cretaceous–Paleogene mass extinction. Our results indicate that, unless substantial conservation effort is directed to freshwater ecosystems, the present extinction crisis will have a severe impact to freshwater biota for millions of years to come.


2018 ◽  
Vol 69 (7) ◽  
pp. 1159 ◽  
Author(s):  
P. Bayliss ◽  
C. M. Finlayson ◽  
J. Innes ◽  
A. Norman-López ◽  
R. Bartolo ◽  
...  

The internationally important river–floodplains of the Kakadu Region in northern Australia are at risk from invasive species and future sea-level rise–saltwater inundation (SLR–SWI), requiring assessments of multiple cumulative risks over different time frames. An integrated risk-assessment framework was developed to assess threats from feral animals and aquatic weeds at three SLR-scenario time frames (present-day, 2070 and 2100) to natural (magpie goose habitats), cultural (indigenous hunting–fishing sites) and economic (tourism revenue less invasive species control costs) values. Probability density functions (pdfs) were fitted to spatial data to characterise values and threats, and combined with Monte Carlo simulation and sensitivity analyses to account for uncertainties. All risks were integrated in a Bayesian belief network to undertake ‘what if’ management-scenario analyses, and incorporated known ecological interactions and uncertainties. Coastal landscapes and socio-ecological systems in the region will be very different by 2100 as a result of SLR; freshwater ecosystems will transform to marine-dominated ecosystems and cannot be managed back to analogue conditions. In this context, future invasive-species risks will decrease, reflecting substantial loss of freshwater habitats previously at risk and a reduction in the extent of invasive species, highlighting the importance of freshwater refugia for the survival of iconic species.


2018 ◽  
Vol 374 (1764) ◽  
pp. 20180019 ◽  
Author(s):  
Matthew S. Schuler ◽  
Miguel Cañedo-Argüelles ◽  
William D. Hintz ◽  
Brenda Dyack ◽  
Sebastian Birk ◽  
...  

Anthropogenic activities such as mining, agriculture and industrial wastes have increased the rate of salinization of freshwater ecosystems around the world. Despite the known and probable consequences of freshwater salinization, few consequential regulatory standards and management procedures exist. Current regulations are generally inadequate because they are regionally inconsistent, lack legal consequences and have few ion-specific standards. The lack of ion-specific standards is problematic, because each anthropogenic source of freshwater salinization is associated with a distinct set of ions that can present unique social and economic costs. Additionally, the environmental and toxicological consequences of freshwater salinization are often dependent on the occurrence, concentration and ratios of specific ions. Therefore, to protect fresh waters from continued salinization, discrete, ion-specific management and regulatory strategies should be considered for each source of freshwater salinization, using data from standardized, ion-specific monitoring practices. To develop comprehensive monitoring, regulatory, and management guidelines, we recommend the use of co-adaptive, multi-stakeholder approaches that balance environmental, social, and economic costs and benefits associated with freshwater salinization. This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.


2020 ◽  
Author(s):  
Jacopo Cerri ◽  
Ernesto Azzurro

Aquatic Invasive species (AIS) are a growing driver of change across marine and freshwater ecosystems but spatially-explicit information is seldom available for supporting management actions and decision making. Here we conceived and tested a new participatory method to map the distribution of three invasive species (Callinectes sapidus, Procambarus clarkii and Oreochromis niloticus) in the coastal lagoon of Lesina (Italy). Local fishers were asked to draw the distribution of each species on pre-printed maps, indicating districts of the lagoon characterized by different abundance levels. Then, maps were converted to a lattice grid and a Bayesian hierarchical Generalized Additive Modeling was adopted to model species distribution in the lagoon, calculating the coefficient of variation for model fitted values to map fishers agreement about the distribution of each species.The spatial gradient in the abundance of the three species in the lagoon aligned with their ecological requirements. C. sapidus was abundant throughout the whole lagoon, peaking in correspondence of saltmarsh vegetation, while P. clarkii and O. niloticus, were much less abundant and remained distributed near to freshwater inputs. Experts agreed about the spatial distribution of C. sapidus in the lagoon, with a median coefficient of variation in model fitted values of 3.9%. On the other hand, the coefficient of variation was higher for P.clarkii (19.9%) O. niloticus (18.4%), indicating a higher level of uncertainty about their estimated distribution.With this example, we provided new metrics to evaluate the quality of LEK-based participatory mapping in terms of agreement and consistency among experts. The resulting information provides new insights for spatially informed management across aquatic realms in relation to the increasing ecological and socio-economical pressures posed by biological invaders.


Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 59
Author(s):  
Camila Pantoja ◽  
Anna Faltýnková ◽  
Katie O’Dwyer ◽  
Damien Jouet ◽  
Karl Skírnisson ◽  
...  

The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae. The number of echinostome species in different hosts did not vary greatly and ranged from one to three species. Of these 14 trematode species, we discovered four species (Echinoparyphium sp. 1, Echinoparyphium sp. 2, Neopetasiger sp. 5, and Echinostomatidae gen. sp.) as novel in Europe; we provide descriptions for the newly recorded species and those not previously associated with DNA sequences. Two species from Iceland (Neopetasiger islandicus and Echinoparyphium sp. 2) were recorded in both Iceland and North America. All species found in Ireland are new records for this country. Via an integrative taxonomic approach taken, both morphological and molecular data are provided for comparison with future studies to elucidate many of the unknown parasite life cycles and transmission routes. Our reports of species distributions spanning Europe and North America highlight the need for parasite biodiversity assessments across large geographical areas.


2016 ◽  
Vol 9 (1) ◽  
pp. 60-70 ◽  
Author(s):  
David R. Clements ◽  
Todd Larsen ◽  
Jennifer Grenz

AbstractInvasive species with distributions that encompass much of the North American environment often demand a range of management approaches, for several key reasons. Firstly, the North American environment includes a large number of highly variable habitats in terms of climatic, edaphic, and landscape features. Secondly, these regional habitat differences are accentuated by jurisdictions within Canada and the United States, whereby approaches and available resources differ at local, regional, and national scales. Another important consideration is whether an invasive species or complex also possesses genetic variation. All three of these factors render the knotweed complex in North America a highly variable target for management. In this paper we review existing knowledge of the variable nature of knotweed species (Fallopia japonica (Houtt.) Ronse Decr., Fallopia sachalinensis (F. Schmidt ex Maxim) Ronse Decr., and Fallopia × bohemica, (Chrtek and Chrtková) J. P. Bailey in North America, and evaluate how herbicidal, mechanical and biological control measures must account for this genetic variation, as well as accounting for regional differences and the potential northward expansion of knotweed under climate change. The imminent release of the psyllid, Aphalara itadori Shinji as a biological control agent in North America must also navigate regional and genetic differences. Prior European experience dealing with the three knotweed species should prove useful, but additional research is needed to meet the emerging challenge posed by F. × bohemica in North America, including the possibility of glyphosate resistance. Managers also face challenges associated with posttreatment restoration measures. Furthermore, disparities in resources available to address knotweed management across the continent need to be addressed to contain the rapid spread of this highly persistent and adaptable species. Linking practitioners dealing with knotweed “on the ground” with academic research is a crucial step in the process of marshalling all available resources to reduce the rapidly spreading populations of knotweed.


Zootaxa ◽  
2020 ◽  
Vol 4816 (3) ◽  
pp. 392-396
Author(s):  
DAIZY BHARTI ◽  
FRANCISCO BRUSA ◽  
SANTOSH KUMAR ◽  
KAILASH CHANDRA

Catenulida are mostly inhabitants of freshwater ecosystems, like ponds, streams, though the marine species are few (Larsson and Willems, 2010). About 110 species of catenulids are known worldwide, with most of the studies conducted in South America (Marcus, 1945a, 1945b; Noreña et al., 2005), North America (Kepner and Carter 1931; Nuttycombe and Waters, 1938) and Scandinavian Peninsula (Luther, 1960, Larsson and Willems, 2010; Larsson et al., 2008). The diversity of catenulids from India has not been studied intensively; however some reports on other turbellaria exists for the country (Annandale, 1912; Whitehouse, 1913; Kapadia, 1947; Basil and Fernando, 1975; Apte and Pitale, 2011; Kalita and Goswami, 2012; Venkataraman et al., 2015). The genus Stenostomum, however, has been studied extensively around the world with identification of over 60 species (Tyler et al., 2006-2016). This is first report of the genus from India. The present study was part of the project to catalogue the diversity of free living protozoan ciliates from the Hooghly stretch of the Ganga River during which the flatworms were found. The worms were studied based on the live observations, with recognition of characters which led to its identification. This study serves to fill knowledge gap in the freshwater flatworms from India. 


Sign in / Sign up

Export Citation Format

Share Document