scholarly journals Effects of Gold Nanoparticles Combined Human β-defensin 3 on The Alveolar Bone of Experimental Periodontitis

Author(s):  
Jing Zhou ◽  
Lingjun Li ◽  
Di Cui ◽  
Xiaoting Xie ◽  
Wenrong Yang ◽  
...  

Abstract Background Nanomaterials of biomedicine and tissue engineering have been proposed in the treatment of periodontitis recently. This study aimed to investigate the effect of gold nanoparticles (AuNPs) combined human β-defensin 3 (hBD3) on the repair of alveolar bone of experimental periodontitis in rats. Methods A model of experimental periodontitis was established by ligating of the maxillary second molars with silk thread in rats, which were treated with or without AuNPs combined hBD3. Micro-focus computerized tomography (micro-CT) scanning, enzyme-linked immunosorbent assay (ELISA) and histological and immunohistochemical staining, including alkaline phosphatase (ALP), osteoprotegerin (OPG) tartrate-resistant acid phosphatase (TRAP) and receptor activator of NF-κB Ligand (RANKL), were used to analyze. Results Micro-CT demonstrated that the alveolar bone resorption was significantly reduced after the treatment of AuNPs combined hBD3. Levels of TNF-α and IL-6 decreased markedly compared with the ligation group. HE and Masson staining showed that AuNPs combined hBD3 group had less inflammatory cell infiltration, collagen fibrosis and fracture, but higher calcification in the new bone tissue. Moreover, the administration of AuNPs combined hBD3 increased the expression of ALP and OPG (related to bone formation) expression, while decreased TRAP and RANKL (related to bone resorption) expression. Conclusions AuNPs combined hBD3 had a protective effect on the progress of experimental periodontitis in rats, and also played a certain role in promoting osteogenesis.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Zhou ◽  
Lingjun Li ◽  
Di Cui ◽  
Xiaoting Xie ◽  
Wenrong Yang ◽  
...  

Abstract Background Nanomaterials of biomedicine and tissue engineering have been proposed for the treatment of periodontitis in recent years. This study aimed to investigate the effects of gold nanoparticles (AuNPs) combined with human β-defensin 3 (hBD3) on the repair of the alveolar bones of experimental periodontitis in rats. Methods A model of experimental periodontitis was established by ligation of the maxillary second molars with silk thread in rats, which were treated with or without AuNPs combined with hBD3. Micro‐computerized tomography (micro-CT) scanning, enzyme-linked immunosorbent assay, and histological and immunohistochemical staining, including alkaline phosphatase (ALP), osteoprotegerin (OPG), tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-κB ligand (RANKL), were used to analyze the samples. Results Micro-CT demonstrated that the alveolar bone resorption was significantly reduced after the treatment with AuNPs combined with hBD3. Levels of TNF-α and IL-6 were decreased markedly compared with the ligation group. H&E and Masson staining showed that AuNPs combined with hBD3 group had less inflammatory cell infiltration, collagen fibrosis and fracture, but higher calcification in the new bone tissue. Moreover, the administration of AuNPs combined with hBD3 increased the expression levels of ALP and OPG (related to bone formation) while decreasing the expression levels of TRAP and RANKL (related to bone resorption) expression. Conclusions AuNPs combined with hBD3 had a protective effect on the progression of experimental periodontitis in rats and played a certain role in suppressing osteoclastogenesis and alleviating the inflammatory destruction of periodontitis along with the promotion of bone repair.


2021 ◽  
Vol 22 (15) ◽  
pp. 8225
Author(s):  
Ko Eun Lee ◽  
Mijeong Jeon ◽  
Seunghan Mo ◽  
Hyo-Seol Lee ◽  
Je Seon Song ◽  
...  

Replacement and inflammatory resorption are serious complications associated with the delayed replantation of avulsed teeth. In this study, we aimed to assess whether deferoxamine (DFO) can suppress inflammation and osteoclastogenesis in vitro and attenuate inflammation and bone resorption in a replanted rat tooth model. Cell viability and inflammation were evaluated in RAW264.7 cells. Osteoclastogenesis was confirmed by tartrate-resistant acid phosphatase staining, reactive oxygen species (ROS) measurement, and quantitative reverse transcriptase–polymerase chain reaction in teeth exposed to different concentrations of DFO. In vivo, molars of 31 six-week-old male Sprague–Dawley rats were extracted and stored in saline (n = 10) or DFO solution (n = 21) before replantation. Micro-computed tomography (micro-CT) imaging and histological analysis were performed to evaluate inflammation and root and alveolar bone resorption. DFO downregulated the genes related to inflammation and osteoclastogenesis. DFO also reduced ROS production and regulated specific pathways. Furthermore, the results of the micro-CT and histological analyses provided evidence of the decrease in inflammation and hard tissue resorption in the DFO group. Overall, these results suggest that DFO reduces inflammation and osteoclastogenesis in a tooth replantation model, and thus, it has to be further investigated as a root surface treatment option for an avulsed tooth.


2021 ◽  
Vol 16 (4) ◽  
pp. 1934578X2110024
Author(s):  
Taira Katayama ◽  
Takenori Sato ◽  
Nobushiro Hamada ◽  
Seiji Goda ◽  
Tetsutaro Yamaguchi ◽  
...  

Recently, natural ingredients have focused on the inhibition of bacteria-induced alveolar bone resorption in orthodontic treatment. Jixueteng (Jix), a Chinese traditional medicine, contains several kinds of flavonoids given their biological properties. We evaluated the effects of Jix on experimental periodontitis during orthodontic tooth movement (OTM) in rats. To this end, 9-week-old male Wistar rats, which were equipped with orthodontic appliance, were orally infected with Porphyromonas gingivalis (Pg), while Jix was administered in their drinking water. A total of 28 days after the beginning of OTM, alveolar bone resorption on the right side of the upper jaws was scanned with micro-computed tomography. These were also used as histological specimens and underwent tartrate-resistant acid phosphatase (TRAP) staining. TRAP-positive multinucleated cells were counted as osteoclasts. As a result, the distance of tooth movement in the OTM and Pg infection with Jix administration (OTM + Pg + Jix) group was the same as that of the sham-infected group. The amount of bone resorption and number of osteoclasts in the OTM + Pg + Jix group was more significantly decreased than that in the OTM and Pg-infected group ( P < 0.05). Hence, Jix had little effect on OTM and inhibited Pg-induced alveolar bone destruction. We suggested that the administration of Jix can support tooth movement and contribute to the prevention of periodontitis during orthodontic treatment.


Author(s):  
Ke Yu ◽  
Wenjia Liu ◽  
Naichuan Su ◽  
Helin Chen ◽  
Hang Wang ◽  
...  

The aim of this research was to evaluate the resorption and osseointegration of an autogenous bone ring, which was grafted in a local vertical alveolar defect with simultaneous implant placement. Six Beagle dogs were enrolled in the study; their four nonadjacent mandibular premolars were extracted, and the buccal plate was removed to create bone defects in two of the four sites. Three months after extraction, Straumann implants (Ø 3.3 mm, length of 8 mm) were placed in the bone defect sites with simultaneous autogenous bone ring grafting and in the conventional extraction sites. After a 3-month healing period and a 3-month loading period, the animals were euthanized. The harvested samples were analyzed using micro-CT scanning and histological analysis. From the micro-CT measurements, the average vertical bone resorption of the bone ring was 0.23±0.03 mm, which was not significantly different from that around the conventional implant, 0.24±0.12 mm (P &gt; 0.05). The ratio of the bone volume to the total volume of the bone ring group was 91.11±0.02, which was higher than that of the control group, 88.38±2.34 (P &lt; 0.05). From the hard tissue section, the bone rings developed fine osseointegration with the implants and the base alveolar bone. The results suggest autogenous bone ring grafting with simultaneous implant placement can survive in a local vertical bone defect with little bone resorption and good osseointegration in dogs with strict management. A bone ring graft must be compared with guided bone generation (GBR), and a larger and longer observation must be confirmed in clinical patients.


2014 ◽  
Vol 42 (02) ◽  
pp. 361-374 ◽  
Author(s):  
Chih-Yuan Chang ◽  
Earl Fu ◽  
Cheng-Yang Chiang ◽  
Wei-Jeng Chang ◽  
Wan-Chien Cheng ◽  
...  

We evaluated the effects of paeonol, a phenolic compound of Moutan Cortex, on the tissue inflammation and destruction in experimental periodontitis of rats. The maxillary palatal bony surfaces of 18 rats received injections of lipopolysaccharide (LPS, 5 mg/mL), PBS or LPS-plus-paeonol (40 mg/kg, intra-peritoneal injection) for three days. Five days later, the osteoclasts were examined and compared after tartrate-resistant acid phosphatase staining. In another 36 rats, the experimental periodontitis was induced by placing the ligatures around the maxillary second and mandibular first molars. Seven days later, the periodontal destruction and inflammation in rats with paeonol (40 mg/kg or 80 mg/kg) and those who had no ligature or without paeonol were compared by dental radiography, micro-computerized tomography (micro-CT), and histology. Gingival mRNA expressions of pre-inflammatory cytokines, including IL-1β' IL-6 and TNF-α were also examined. Compared to the effect of the LPS positive control, the paeonol injection significantly reduced the induced osteoclast formation. In ligature-induced periodontitis, the periodontal bone supporting ratio was significantly higher in the ligature-plus-paeonol groups compared to that of the ligature group, although they were still less than those in the non-ligature group. By micro-CT and by histology/histometry, a consistent anti-destructive effect was observed when paeonol was added. Moreover, less amount of inflammatory cell-infiltrated connective tissue area, connective tissue attachment, and mRNA expressions of pro-inflammatory cytokines were presented in the ligature-plus-paeonol groups than those in the ligature group. These results suggested that paeonol might have a protective potential on gingival tissue inflammation and alveolar bone loss during the process of periodontitis by inhibiting pro-inflammatory cytokines.


2021 ◽  
Vol 10 (3) ◽  
pp. 386
Author(s):  
Yuji Inagaki ◽  
Jun-ichi Kido ◽  
Yasufumi Nishikawa ◽  
Rie Kido ◽  
Eijiro Sakamoto ◽  
...  

Gan-Lu-Yin (GLY), a traditional Chinese herbal medicine, shows therapeutic effects on periodontitis, but that mechanism is not well known. This study aims to clarify the precise mechanism by investigating the inhibitory effects of GLY extracts on osteoclastogenesis in vitro and on bone resorption in periodontitis in vivo. RAW264.7 cells are cultured with soluble receptor activator of nuclear factor-kappa B (sRANKL) and GLY extracts (0.01–1.0 mg/mL), and stained for tartrate-resistant acid phosphatase (TRAP) to evaluate osteoclast differentiation. Experimental periodontitis is induced by placing a nylon ligature around the second maxillary molar in rats, and rats are administered GLY extracts (60 mg/kg) daily for 20 days. Their maxillae are collected on day 4 and 20, and the levels of alveolar bone resorption and osteoclast differentiation are estimated using micro-computed tomography (CT) and histological analysis, respectively. In RAW264.7 cells, GLY extracts significantly inhibit sRANKL-induced osteoclast differentiation at a concentration of more than 0.05 mg/mL. In experimental periodontitis, administering GLY extracts significantly decreases the number of TRAP-positive osteoclasts in the alveolar bone on day 4, and significantly inhibits the ligature-induced bone resorption on day 20. These results show that GLY extracts suppress bone resorption by inhibiting osteoclast differentiation in experimental periodontitis, suggesting that GLY extracts are potentially useful for oral care in periodontitis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hui Yu ◽  
Tianyi Zhang ◽  
Haibin Lu ◽  
Qi Ma ◽  
Dong Zhao ◽  
...  

Abstract Background Granulocyte colony-stimulating factor (G-CSF) is an important immune factor that mediates bone metabolism by regulating the functions of osteoclasts and osteoblasts. Bone loss is a serious and progressive result of periodontitis. However, the mechanisms underlying the effects of G-CSF on periodontal inflammation have yet not been completely elucidated. Here, we examined whether an anti-G-CSF antibody could inhibit bone resorption in a model of experimental periodontitis and investigated the local expression of G-CSF in periodontal tissues. Methods Experimental periodontitis was induced in mice using ligatures. The levels of G-CSF in serum and bone marrow were measured; immunofluorescence was then performed to analyze the localization and expression of G-CSF in periodontal tissues. Mice with periodontitis were administered anti-G-CSF antibody by tail vein injection to assess the inhibition of bone resorption. Three-dimensional reconstruction was performed to measure bone destruction‐related parameters via micro-computed tomography analysis. Immunofluorescence staining was used to investigate the presence of osteocalcin-positive osteoblasts; tartrate-resistant acid phosphatase (TRAP) staining was used to observe osteoclast activity in alveolar bone. Results The level of G-CSF in serum was significantly elevated in mice with periodontitis. Immunofluorescence analyses showed that G-CSF was mostly expressed in the cell membrane of gingival epithelial cells; this expression was enhanced in the periodontitis group. Additionally, systemic administration of anti-G-CSF antibody significantly inhibited alveolar bone resorption, as evidenced by improvements in bone volume/total volume, bone surface area/bone volume, trabecular thickness, trabecular spacing, and trabecular pattern factor values. Immunofluorescence analysis revealed an enhanced number of osteocalcin-positive osteoblasts, while TRAP staining revealed reduction of osteoclast activity. Conclusions G-CSF expression levels were significantly up-regulated in the serum and gingival epithelial cells. Together, anti-G-CSF antibody administration could alleviates alveolar bone resorption, suggesting that G-CSF may be one of the essential immune factors that mediate the bone loss in periodontitis.


Pharmacology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Naseratun Nessa ◽  
Miyuki Kobara ◽  
Hiroe Toba ◽  
Tetsuya Adachi ◽  
Toshiro Yamamoto ◽  
...  

Introduction: Periodontitis is a lifestyle-related disease that is characterized by chronic inflammation in gingival tissue. Febuxostat, a xanthine oxidase inhibitor, exerts anti-inflammatory and antioxidant effects. Objective: The present study investigated the effects of febuxostat on periodontitis in a rat model. Methods: Male Wistar rats were divided into 3 groups: control, periodontitis, and febuxostat-treated periodontitis groups. Periodontitis was induced by placing a ligature wire around the 2nd maxillary molar and the administration of febuxostat (5 mg/kg/day) was then initiated. After 4 weeks, alveolar bone loss was assessed by micro-computed tomography and methylene blue staining. The expression of osteoprotegerin (OPG), a bone resorption inhibitor, was detected by quantitative RT-PCR and immunological staining, and the number of osteoclasts in gingival tissue was assessed by tartrate-resistant acid phosphatase staining. The mRNA and protein expression levels of the proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β), in gingival tissue were measured using quantitative RT-PCR and immunological staining. Oxidative stress in gingival tissue was evaluated by the expression of 4-hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2-deoxyguanosine (8-OHdG). To clarify the systemic effects of periodontitis, blood pressure and glucose tolerance were examined. Results: In rats with periodontitis, alveolar bone resorption was associated with reductions in OPG and increases in osteoclast numbers. The gingival expression of TNF-α, IL-1β, 4-HNE, and 8-OHdG was up-regulated in rats with periodontitis. Febuxostat significantly reduced alveolar bone loss, proinflammatory cytokine levels, and oxidative stress. It also attenuated periodontitis-induced glucose intolerance and blood pressure elevations. Conclusion: Febuxostat prevented the progression of periodontitis and associated systemic effects by inhibiting proinflammatory mediators and oxidative stress.


Cartilage ◽  
2020 ◽  
pp. 194760352098016
Author(s):  
Sampath Samuel Joshua Pragasam ◽  
Vijayalakshmi Venkatesan

Objective The present study aims to assess for temporal changes in tibial subchondral bone and cartilage in WNIN/Gr-Ob rats (portraying obesity, insulin resistance, dyslipidemia, impaired glucose tolerance, hypertension) in comparison with Wistar controls (WNIN) using anthropometry, micro-computed tomography (micro-CT), scanning electron microscopy (SEM), histopathology, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. Design Body weight, abdominal circumference, body mass index (BMI), lean/fat mass, serum tumor necrosis factor (TNF)-α levels were measured (ELISA), followed by ultrastructural analysis of tibial subchondral bone (micro-CT) and cartilage architecture (histopathology and SEM) in WNIN/Gr-Ob and WNIN rats with age (3, 6 and 9 months). Additionally, primary cultures of articular chondrocytes isolated from 6-month-old WNIN/Gr-Ob and WNIN rats were assessed for matrix metalloproteinase (MMP)-13 and Collagen type II (COL2A1) by immunofluorescence. Results WNIN/Gr-Ob rats exhibited frank obesity with increased BMI, lean and fat mass vis-à-vis significantly higher levels of serum TNF-α (6>9>3 months) as compared with the controls. With an increase in BMI, WNIN/Gr-Ob rats presented with tibial cartilage fibrillation, erosion, osteophyte formation (6 months) and subchondral bone cyst (9 months) confirmed by histology and SEM. An increase in subchondral trabecular bone volume (sclerosis with decreased plate porosity) was observed in all ages in WNIN/Gr-Ob rats compared to their Control. Gaining insights, primary cultures of articular chondrocytes complemented with altered cellular expressions of COL2A1 and MMP-13 from WNIN/Gr-Ob rats, indicating osteoarthritis (OA) progression. Conclusion Multiple metabolic perturbations featured in WNIN/Gr-Ob rats were effective to induce spontaneous OA-like degenerative changes affecting knee joints akin to human OA.


Sign in / Sign up

Export Citation Format

Share Document